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Abstract

The Pearson product-moment correlation commonly used as statis-
tical dependence measure was developed assuming normal marginal and
addresses only linear dependence. In most applications, the distribution
is assumed to be a multivariate normal or log- normal for tractable cal-
culus even if the assumption may not be appropriate. A copula based
approach couples marginal distributions to form flexible multivariate
distribution functions. The appeal of copula approach lies in the fact
that it eliminates the implied reliance on the multivariate normal or the
assumption that dimensions are independent. We present Ali-Mikhail-
Haq (AMH) copula and its statistical properties to show that AMH
copula could be extensively used in data analysis.
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1. INTRODUCTION

Copulas express joint distributions of random variables. With a copula we
can separate the joint distribution into marginal distributions of each variable.
One basic result is that any joint distribution can be expressed in this man-
ner. Another advantage is that the conditional distributions can be readily
expressed using the copula. Sklar’s theorem (1959) states that any multivari-
ate distribution can be expressed as the copula function C(u1, ..., ui, ..., uk)
evaluated at each of the marginal distributions. Using probability integral
transform, each continuous marginal ui = Fi(xi) has a uniform distribution
on I ∈ [0, 1] where Fi(xi) is the cumulative integral of fi(xi) for the ran-
dom variable Xi where Xi assume values on the extended real line [−∞,∞].
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The k-dimensional probability distribution function F has a unique copula
representation

F (x1, x2, ..., xk) = C(F1(x1), F2(x2), ..., Fk(xk)) = C(u1, u2, ..., uk). (1.1)

The joint probability density is written as

f(x1, x2, ..., xk) = Πk
i=1fi(xi) × C(u1, u2, ..., uk), (1.2)

where fi(xi) is each marginal density and coupling is provided by the copula
probability density

f(u1, u2, ..., uk) =
∂kC(u1, u2, ..., uk)

∂u1∂u2 ... ∂uk

. (1.3)

When random variables are independent, C(u1, u2, ..., uk) is identically equal
to one. The importance of equation (1.2) is that the independent portion, ex-
pressed as the product of the marginal, can be separated from the function
C(u1, u2, ..., uk) describing the dependence structure or shape. The simplest
copula is C(u1, u2, ..., uk) = u1u2...uk with the uniform density for independent
random variables. Three famous measures of concordance namely Kendall’s
τ , Spearman’s ρ and Gini’s index γ, could be expressed in terms of copulas
(Schweizer and Wolff, 1981)

τ = 4
∫ ∫

I2
C(u1, u2)dC(u1, u2) − 1, (1.4)

ρ = 12
∫ ∫

I2
u1u2dC(u1, u2) − 3, (1.5)

γ = 2
∫ ∫

I2
(|u1 + u2 − 1| − |u1 − u2|)dC(u1, u2). (1.6)

It may however be noted that the Pearson’s linear correlation coefficient r
can not be expressed in terms of copula. The choice of copula can be made
using information criteria such as the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) or the Schwartz information criterion
(SIC). Both AIC and BIC penalize the negative maximum log-likelihood of the
estimated model by the number of parameters in the model. These criteria are
AIC = -2 log (maximum likelihood) + 2 (number of parameters) and BIC =
-2 log (maximum likelihood) + (number of parameters)(log of the sample size
). A smaller relative AIC or BIC represents a better model fit.

In this paper, we attempt to show that Ali-Mikhail-Haq (AMH) copula
have nice statistical properties and tractable results. Hence AMH copula can
be quite useful in statistical data analysis. Paper is organized as follows. In
section two, we summarize class of Archimedean copulas. AMH copula and
probability distributions are discussed in section three. Problem of statistical
inference is considered in section four. We illustrate application of copula
method in section five. Section six deals with discussion and future research.
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2. Archimedean Family of Copulas

An important class of copulas is known as Archimedean copulas. Like a
copula, a triangle norm or t-norm maps [0, 1]p to [0, 1] and joins distribution
functions. Some t-norms (exactly those which are 1-Lipschitz) are copulas and
vice versa; some copulas (exactly those which are associative) are t-norms. The
Archimedean t-norms which are also copulas are called Archimedean copulas.
The Archimedean representation allows to reduce the study of a multivariate
copula to a single univariate function.

2.1. Archimedean copulas
Genest and Mackay (1986) define Archimedean copulas as

C(u1, u2, ..., uk) =

{
φ−1 (φ(u1) + ... + φ(uk)) , if

∑k
i=1 φ(ui) ≤ φ(0)

0, otherwise
, (2.1)

where φ(u) is a C2 function with φ(1) = 0, φ
′
(u) < 0, and φ

′′
(u) > 0 for all u ∈

[0, 1]. The function φ(u) is called the generator of the copula. Archimedean
copulas play an important role because they possess several desired properties
of dependence measure like symmetry, associative etc. For any constant s > 0,
the function sφ is also a generator of C. Archimedean copulas (which are
always 2-copulas) as p-ary operators need not be p-copulas. A necessary and
sufficient condition for an Archimedean copula to be p-copula for each p ≥ 2 is
the total monotonicity of the function φ−1 (Nelson, 2006). Different choices of
the generator function φ yield different copulas. For an Archimedean copula,
the Kendall’s rank correlation τ can be evaluated directly from the generator
of the copula (Genest and MacKay, 1986)

τ = 1 + 4
∫ 1

0

φ(t)

φ′(t)
dt. (2.2)

2.2. Tail dependence
The notion of tail dependence is more interesting. Tail dependence de-

scribes the limiting proportion that one margin exceeds a certain threshold
given that the other margin has already exceeded that threshold. Joe (1997)
defines:

Definition 1. If a bivariate copula C(u1, u2) is such that

lim
u→1

[1 − 2u + C(u, u)]

(1 − u)
= λU , (2.3)

exists, then C(u1, u2) has upper tail dependence for λU ∈ (0, 1] and no upper
tail dependence for λU = 0. The measure is extensively used in extreme value
theory. It is the probability that one variable is extreme given that the other is
extreme, i.e., λU = Pr(U1 > u|U2 > u). Thus λU can be viewed as a quantile-
dependent measure of dependence (Coles, Currie and Tawn, 1999). Similarly



660 P. Kumar

lower tail dependence is defined as λL = Pr(U1 < u|U2 < u), λL ∈ (0, 1] and is
expressed in terms of copula

lim
u→0

C(u, u)

u
= λL. (2.4)

Copula has lower tail dependence for λL ∈ (0, 1] and no lower tail dependence
for λL = 0.

The one-parameter (θ) families of Archimedean copulas are tabulated in
Nelson (2006). In what follows now, we will consider the bivariate case (k = 2)
for tractable calculus results.

3. Ali-Mikhail-Haq copula and probability distributions
Gumbels’s bivariate logistic distribution (Gumbel, 1960) for random vari-

ables X1 and X2 is given by

H(x1, x2) =
(
1 + e−x1 + e−x2

)−1
. (3.1)

This joint distribution function H(x1, x2) suffers from the defect that it lacks
a parameter which limits its usefulness in applications. Ali, Mikhail and Haq
(1978) corrected it by defining the joint distribution as

Hθ(x1, x2) = [1 + e−x1 + e−x2 + (1 − θ)e−x1−x2]−1, (3.2)

where θ ∈ [−1, 1].
By using the probability transform and algebraic method, AMH copula is

derived. Alternatively, by considering the generator function

φ(t) = ln[1 − θ(1 − t)]/t, (3.3)

and from (2.1), AMH copula is defined by

C(u1, u2) =
u1u2

1 − θ(1 − u1)(1 − u2)
, (3.4)

where the copula parameter θ ∈ [−1, 1]. It may be noted that AMH copula
is the only one amongst twenty two Archimedean copulas tabulated in Nel-
son (2006) whose parameter lies on a closed interval between -1 and +1 and
measures both, positive and negative, dependence.

We now present the results on the characterization of AMH copula.

Theorem 1 . The AMH copula parameter θ, Kendall’s τ and Spearman’s ρ
satisfy

τ =
3θ − 2

3θ
− 2(1 − θ)2 ln(1 − θ)

3θ2
, (3.5)

ρ =
12(1 + θ)di log(1 − θ) − 24(1 − θ) ln(1 − θ)

θ2
− 3(θ + 12)

θ
, (3.6)
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where the dilogarithm function di log(x) is

di log(x) =
∫ x

1

ln t

1 − t
dt.

Proof. We consider the relationship between Archimedean copula and
Kendall’s τ in (2.2) and the generator function for AMH copula in (3.3). Then,
we have

τ = 1 + 4
∫ 1

0

φ(t)

φ′(t)
dt = 1 + 4

∫ 1

0

ln[1 − θ(1 − t)]/t

(d/dt) ln[(1 − θ(1 − t)]/t
dt

=
3θ − 2

3θ
− 2(1 − θ)2 ln(1 − θ)

3θ2
.

The AMH copula parameter θ in (3.5) is computed from the above equation.
To prove the relationship between ρ and θ, we have from (1.5)

ρ = 12
∫ ∫

I2
u1u2dC(u1, u2) − 3,

or equivalently

ρ = 12
∫ ∫

I2
C(u1, u2)du1du2 − 3

= 12
∫ ∫

I2

u1u2

1 − θ(1 − u1)(1 − u2)
du1du2 − 3

= 12

(−3θ + dilog (1 − θ) θ + dilog (1 − θ) − 2 ln (1 − θ) + 2 (ln (1 − θ)) θ

θ2

)
− 3.

Hence we have (3.6).
It may be noted that

τ ∈
[
5 − 8 ln 2

3
,
1

3

]
∼= [−0.1817, 0.3333] , (3.7)

and

ρ ∈
[
33 − 48 ln 2, 4π2 − 39

] ∼= [−0.2711, 0.4784] . (3.8)

We note that AMH copula parameter θ do not cover the entire range [-
1,1] of the association measures however it allows both negative and positive
dependence.

The next theorem presents the distribution functions.
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Theorem 2 . The conditional distribution function for U2 given U1 = u1 is

f(u2|u1) =
u2[1 − θ(1 − u2)]

[1 − θ (1 − u1) (1 − u2)]2
, (3.9)

and the joint distribution function for U1 and U2

f(u1, u2) =
1 + θ[(1 + u1) (1 + u2) − 3] + θ2 (1 − u1) (1 − u2)

[1 − θ (1 − u1) (1 − u2)]3
. (3.10)

Proof. The conditional distribution function f(u2|u1) in (3.9) follows from
the derivative of C(u1, u2) with respect to u1, i.e., ∂

∂u1
C(u, v) and the joint

distribution function f(u1, u2) from ∂2

∂u1∂u2
C(u1, u2).

Tail dependence properties of AMH copula follows next.

Theorem 3 . AMH copula exhibits left tail dependence for θ = 1.

Proof. To prove this result, we evaluate the following limits

λL = lim
u→0

C(u, u)

u
= lim

u→0

u

1 − θ ( 1 − u)2

=

⎧⎨
⎩

limu→0
u

1−θ( 1−u)2
= 0.5, forθ = 1,

limu→0
u

1−θ( 1−u)2
= 0, forθ < 1,

, (3.11)

and

λU = lim
u→1

[1 − 2u + C(u, u)]

(1 − u)
= lim

u→1

[
1 − u {1 − θ(1 − u)}

1 − θ ( 1 − u)2

]
= 0. (3.12)

Since λL �= 0 for θ = 1, left extreme is asymptotically dependent for θ = 1.
For every other θ < 1, extremes are asymptotically independent. Hence the
theorem.

4. Estimation
Copulas involve several underlying functions like marginal distribution func-

tions and joint distribution function. To estimate copula function, we need
to specify how to estimate separately the marginal and joint distributions.
Depending on underlying assumptions, some quantities have to be estimated
parametrically or semiparametrically or nonparametrically. In case of nonpara-
metric estimation, we choose between the usual method based on empirical
counterparts and smoothing methods like kernels, wavelets, orthogonal poly-
nomials.Without any valuable prior information, nonparametric estimation
should be preferred especially for the marginal distribution estimation.

4.1. Estimating marginal and joint distributions
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Consider a k- sample (Xi), i = 1, ..., k. These are some realizations of the
d-random vector X = (X1, ..., Xd). We do not assume that Xi = (X1i, ..., Xdi)
are mutually independent. Then the j-th marginal distribution function is
empirically estimated by

Fj(x) =
1

k

k∑
i=1

1(Xji ≤ x), (4.1)

[Fj ]
−1(uj) is the empirical quantile corresponding to uj ∈ [0, 1].
Alternatively, j-th marginal distribution can be estimated by using the

function K : R → R,
∫

K = 1 by

Fj(x) =
1

k

k∑
i=1

K(
x − Xji

h
), (4.2)

where h := hk is a bandwidth sequence such that hk > 0 and hk → 0 when
k → ∞.

Similarly, the joint distribution function can be estimated empirically by

F (x) =
1

k

k∑
i=1

1(Xi ≤ x), (4.3)

or by the kernel method

F (x) =
1

k

k∑
i=1

K(
x − Xi

h
), (4.4)

with a d-dimensional kernel

K(x) =
∫ x1

−∞
...
∫ xd

−∞
K, (4.5)

for every x = (x1, ..., xd) ∈ Rd.
Thus, a d-dimensional copula can be estimated by

Ĉ(u) = F
(
[F1]

−1(u1), ..., [Fd]
−1(ud)

)
. (4.6)

4.2. Simulation from AMH copula
Simulation in statistics help to investigate properties of the estimator and

to understand the underlying joint distributions. In general to generate copula
from the k-variate X = (X1, ..., Xk) using the conditional distribution method,
steps are:

1. Generate a random number X1 = x1 from the marginal distribution of
X1.

2. Generate a random number X2 = x2 from the conditional distribution
of X2, given that X1 = x1.
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3. Generate a random number X3 = x3 from the conditional distribution
of X3, given that X2 = x2 and X1 = x1.

4. And so on, for all Xk.
To simulate AMH copula C(u1, u2) in (3.4), we thus have the following

simplified steps:
1. Generate two independent random numbers u1 and t on (0,1).
2. Let

a = 1 − u1;b = 1 − θ(1 + 2at) + 2θ2a2t;

c = 1 + θ(2 − 4a + 4at) + θ2(1 − 4at + 4a2t ). (4.7)

3. Set

u2 =
2t(aθ − 1)2

b +
√

c
. (4.8)

3. The desired simulated pair is (x1, x2) where

x1 = F1
−1(u1), x2 = F2

−1(u2). (4.9)

4.3. Maximum likelihood estimation
In case of uniform marginal, the copula is equivalent to the joint cumula-

tive distribution function. The model parameters can thus be estimated using
maximum likelihood method. Let θ be the vector of parameters to be esti-
mated and Θ the parameter space. The likelihood for an observation t,i.e.,
the probability density of observation t, is function of θ and let it be Lt(θ).
Further, denote by lt(θ) the log-likelihood of Lt(θ). Given n observations,
l(θ) =

∑n
t=1 lt(θ). Then the maximum likelihood estimator θ̂ML of parameter

vector θ satisfies l(θ̂ML) ≥ l(θ), for all θ ∈ Θ. The maximum likelihood esti-

mator θ̂ML is asymptotically normal and thus
√

n
(
θ̂ML − θ0

)
→ N(0, J−1(θ0))

where J(θ0) is the Fisher information matrix.
Applying to the bivariate AMH copula model for a random sample of size

n, the log-likelihood for θ is

l(θ) =
n∑

t=1

log c(u1t, u2t)

=
n∑

t=1

log
1 + θ[(1 + u1t) (1 + u2t) − 3] + θ2 (1 − u1t) (1 − u2t)

[1 − θ (1 − u1t) (1 − u2t)]3
. (4.10)

The maximum likelihood estimator θ̂ML is the value of θ which maximizes
(4.10). The AIC and BIC measures are given by

AIC = −2l(θ) + 2(numberofmodelparameters),

BIC = −2l(θ) + (log n)(numberofmodelparameters).
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Since, the AMH copula have a single parameter (θ), a comparison of AIC
or BIC measures is equivalent to a comparison of their log-likelihoods.

5. Application of AMH copula model
To illustrate the applicability of copula modelling ideas in real situations,

we consider a study reported by Morrow et al. (1992) which enrolled twenty
three patients in a split-mouth trial for the treatment of gingivitis. In this
trial four sites located either on the left or right side of a patient’s mouth
were randomly assigned to either the experimental treatment (chlorhexidine)
or a control (saline). Plaque measurements were taken pre-treatment and two
weeks after baseline on four sites of the patient’s upper jaw. Here we consider
modelling the post-treatment proportions of sites exhibiting plaque in treat-
ment (X1) and control (X2) groups at a two-week follow-up visit. Estimated
value of Kendall’s τ is 0.176. The marginal distributions estimated from the
probability plots are: X1˜Beta(66.88, 8.16) and X2˜Beta(57.91, 17.13). AMH
copula parameter θ is estimated from τ and θ = 0. 64813. Then AMH copula
in this case is

C(u1, u2) =
u1u2

1 − 0. 64813(1 − u1)(1 − u2)
, u1u2 ∈ [0, 1], (5.1)

The model for the proportion of sites exhibiting plaque in treatment (X1)
and control (X2) groups is

f(u1, u2) =
1 + 0. 64813((1 + u1) (1 + u2) − 3) + 0.420 07 (1 − u1) (1 − u2)

(1 − 0. 64813 (1 − u1) (1 − u2))3
, (5.2)

u1, u2 ∈ [0, 1] and x1 =Beta−1(u1; 66.88, 8.16) and x2 =Beta−1(u2; 57.91, 17.13)
The conditional probabilities P (U2 = u2|U1 = u1) are computed from

f(u2|u1) =
u2[1 − .64813(1 − u2)]

[1 − .64813 (1 − u1) (1 − u2)]2
. (5.3)

To obtain the maximum likelihood estimate of θ, we have used AMH copula
parameter θ estimated from the Kendall’s τ and have simulated 1000 pairs of
(U1, U2). Then, we have numerically evaluated likelihood function in (4.10)
for θ = −1( 0.1)1. We note that θ = 0.795 maximizes the likelihood function.
Thus, the maximum likelihood estimate of θ is 0.795 as compared to 0.64813
estimated from Kendall’s τ .

6. Discussion
We presented concept of copula functions and AMH copula in particluar.

We described how they can be used in estimating the probability models in
case of multivariate data. Copulas model basically the dependence structure
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of the random variables. They provide a convenient way to model and simu-
late correlated variables. Several copulas with varying shapes are available for
modeling dependence. We have obtained the conditional and joint probability
distributions of AMH copula which are expressed in simple algebraic functions.
We have also studied tail probabilities in AMH copula framework. Although
copula is an old notion, there are many research areas to explore. This paper
focussed on bivariate copula but many of the concepts can be generalized to the
multivariate case. Parametric estimation may lead to severe underestimation
when the parametric models of marginal distributions or copula are misspec-
ified. Nonparametric methods may also result in underestimation when the
smoothing methods does not consider potential boundary biases in the tail of
the density support.
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