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Abstract

In this paper, we study the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0

with the initial condition u(x, 0) = f(x) for x ∈ Rn, where the operator
Lk

m is defined by

Lk
m = (−1)mk

⎡
⎣
(

p∑
i=1

∂2

∂x2
i

)m

−
⎛
⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞
⎠

m⎤
⎦

k

,

p + q = n is the dimension of the space Rn, u(x, t) is an unknown
function for (x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), f(x) is a given
generalized function, k and m are a positive integer and c is a positive
constant. We obtain the solution of such equation which is related to
the spectrum and the kernel. Moreover, such the kernel has interesting
properties and also related to the kernel of an extension of the heat
equation.
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1 Introduction

It is well known that for the heat equation

∂

∂t
u(x, t) = c2�u(x, t) (1)
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with the initial condition u(x, 0) = f(x), where � is the Laplace operator
defined by

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

and (x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), we obtain the solution in the
convolution form u(x, t) = E(x, t) ∗ f(x) where

E(x, t) =
1

(4c2πt)n/2
e−

|x|2
4c2t . (2)

E(x, t) is call the heat kernel, where |x|2 = x2
1 + x2

2 + · · · + x2
n and t > 0, see

[1, p. 208-209]. We can extend (1) to the equation

∂

∂t
u(x, t) = c2�u(x, t) (3)

where � is the ultra-hyperbolic operator which is defined by

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
p+q

,

p + q = n is the dimension of the Euclidean space Rn. we obtain

E(x, t) =
1

(2π)n

∫
Ω

ec2t[(
�p+q

j=p+1 ξ2
j )−(

�p
i=1 ξ2

i )]+i(ξ,x)dξ (4)

where i =
√−1 and

∑p
i=1 ξ2

i >
∑p+q

j=p+1 ξ2
j , see [5].

On the other hand, diamond heat equation

∂

∂t
u(x, t) + c2♦u(x, t) = 0 (5)

where ♦ is the diamond operator which is defined by

♦ =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

)2

−
(

∂2

∂x2
p+1

+
∂2

∂x2
p+2

+ · · ·+ ∂2

∂x2
p+q

)2

,

p + q = n is the dimension of the Euclidean space Rn, we obtain

E(x, t) =
1

(2π)n

∫
Ω

e
−c2t

�
(
�p

i=1 ξ2
i )

2−(
�p+q

j=p+1 ξ2
j )

2
�
+i(ξ,x)

dξ

and Ω ⊂ Rn is the spectrum of E(x, t) for any fixed t > 0, see [4].
Now the purpose of this work is to study the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0, (6)
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with initial condition u(x, 0) = f(x) for x ∈ Rn where the operator Lk
m is

defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2
i

)m

−
(

p+q∑
j=p+1

∂2

∂x2
j

)m]k

(7)

p + q = n is the dimension of the space Rn, u(x, t) is an unknown function,
f(x) is a given generalized function, k and m is a positive integer and c is a
positive constant.
We obtain u(x, t) = E(x, t)∗f(x), as a solution of (6) which satisfies u(x, 0) =
f(x), where

E(x, t) =
1

(2π)n

∫
Ω

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ (8)

and Ω ⊂ Rn is the spectrum of E(x, t) for any fixed t > 0. The function E(x, t)
is called the kernel or elementary solution of (6).

2 Preliminary Notes

Definition 2.1. Let f(x) ∈ L1(R
n)-the space of integrable function in Rn.

The Fourier transform of f(x) defined by

f̂(ξ) =
1

(2π)n/2

∫
�n

e−i(ξ,x)f(x)dx. (9)

where ξ = (ξ1, ξ2, . . . , ξn) and x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1 + ξ2x2 +
· · · + ξnxn and dx = dx1, dx2, . . . , dxn

Also, the inverse of Fourier transform is defined by

f(x) =
1

(2π)n/2

∫
�n

ei(ξ,x)f̂(ξ)dξ. (10)

Definition 2.2. The spectrum of the kernel E(x, t) defined by (13) is the

bounded support of the Fourier transform Ê(x, t), for any fixed t > 0.

Definition 2.3. Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn and denote

Γ+ = {ξ ∈ Rn : ξ2
1 + ξ2

2 + · · · + ξ2
p − ξ2

p+1 − ξ2
p+2 − · · · − ξ2

p+q > 0 and ξ1 > 0}
to be the set of an interior of the forward cone and Γ+ denotes the closure of
Γ+.

Let Ω be the spectrum of E(x, t) defined by (2.2) and Ω ⊂ Γ+. Let Ê(ξ, t) be
the Fourier transform of E(x, t) which is defined by

Ê(ξ, t) =

⎧⎨
⎩

1

(2π)
n
2

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
�

for ξ ∈ Γ+;

0 for ξ /∈ Γ+.
(11)
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Lemma 2.4. Let The operator L defined by

L =
∂

∂t
+ c2Lk

m, (12)

where Lk
m is the product operator iterated k-times and is defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2
i

)m

−
(

p+q∑
j=p+1

∂2

∂x2
j

)m]k

p + q = n is the dimension of the Rn, x = (x1, x2, . . . , xn) ∈ Rn, k and m are
a positive integer and c is a positive constant. Then we obtain

E(x, t) =
1

(2π)n

∫
Ω

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ (13)

is the elementary solution of (12) in the spectrum Ω ⊂ Rn for t > 0.

Proof. Let E(x, t) be the kernel or elementary solution of Lk
m operator and

let δ be the Dirac-delta distribution. Thus

∂

∂t
E(x, t) + c2Lk

mE(x, t) = δ(x)δ(t).

Applying the Fourier transform to the both sides of the above equation, we
have

∂

∂t
Ê(ξ, t) + c2

[(
p∑

i=1

ξ2
i

)m

−
(

p+q∑
j=p+1

ξ2
j

)m]k

Ê(ξ, t) =
1

(2π)n/2
δ(t).

Hence, we obtain

Ê(ξ, t) =
H(t)

(2π)n/2
e−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k

where H(t) is the Heaviside function. Since H(t) = 1 for t > 0,

Ê(ξ, t) =
1

(2π)n/2
e−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k

which has been already by (11). By inverse Fourier transform, we have

E(x, t) =
1

(2π)n

∫
�n

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ

Since Ω is the spectrum of E(x, t), we obtain

E(x, t) =
1

(2π)n

∫
Ω

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ

for t > 0. �
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3 Main Results

Theorem 3.1. Given the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0 (14)

with initial condition

u(x, 0) = f(x) (15)

where Lk
m is the operator iterated k-times and defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2
i

)m

−
(

p+q∑
j=p+1

∂2

∂x2
j

)m]k

p + q = n is the dimension of the space Rn, u(x, t) is an unknown function for
(x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), f(x) is a given generalized function,
k and m are a positive integer and c is a positive constant. Then

u(x, t) = E(x, t) ∗ f(x) (16)

is a solution of (14) which satisfies (15), where E(x, t) is given by (13).

Proof. Taking the Fourier transform to the both sides of the (14), we obtain

∂

∂t
û(ξ, t) = −c2

[(
p∑

i=1

ξ2
i

)m

−
(

p+q∑
j=p+1

ξ2
j

)m]k

û(ξ, t).

Thus

û(ξ, t) = K(ξ)e−c2t((
�p

i=1 ξ2
i )

m−(
�p+q

j=p+1 ξ2
j )

m
)

k

, (17)

where K(ξ) is constant and û(ξ, 0) = K(ξ).
Now, by (15) we have

K(ξ) = û(ξ, 0) = f̂(ξ) =
1

(2π)n/2

∫
�n

e−i(ξ,x)f(x)dx. (18)

and by the inversion in (10), (17), (18) we obtain

u(x, t) =
1

(2π)n/2

∫
�n

ei(ξ,x)û(ξ, t)dξ

=
1

(2π)n

∫
�n

∫
�n

ei(ξ,x)e−i(ξ,y)f(y)e−c2t[(
�p

i=1 ξ2
i )

m−(
�p+q

j=p+1 ξ2
j )

m
]
k

dξdy.
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u(x, t) =
1

(2π)n

∫
�n

∫
�n

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x−y)

�
f(y)dξdy. (19)

Set

E(x, t) =
1

(2π)n

∫
�n

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ (20)

Since the integral in (20) is divergent, therefore we choose Ω ⊂ Rn be the
spectrum of E(x, t) and by (12), we have

E(x, t) =
1

(2π)n

∫
�n

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ

=
1

(2π)n

∫
Ω

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ (21)

Thus (19) can be written in the convolution form

u(x, t) = E(x, t) ∗ f(x).

Moreover, since E(x, t) exists, we see that

lim
t→0

E(x, t) =
1

(2π)n

∫
Ω

ei(ξ,x)dξ

=
1

(2π)n

∫
�n

ei(ξ,x)dξ

= δ(x), for x ∈ Rn. (22)

holds (see [1,p.396, equation (10.2.19b)]).
Thus for the solution u(x, t) = E(x, t) ∗ f(x) of (14), then we have

u(x, 0) = lim
t→0

u(x, t) = lim
t→0

E(x, t) ∗ f(x) = δ(x) ∗ f(x) = f(x)

which satisfies (15). This complete the proof. �

Theorem 3.2. The kernel E(x, t) is defined by (21) has the following prop-
erties:

(1) E(x, t) ∈ C∞(Rn × (0,∞)) the space of continuous with infinitely differ-
entiable,

(2) ( ∂
∂t

+ c2Lk
m)E(x, t) = 0, for t > 0,

(3) |E(x, t| ≤ 22−n

πn/2

M(t)
Γ(p

2
)Γ( q

2
)
, for t > 0,

where M(t) is a function of t > 0 in the the spectrum Ω and Γ denote
the Gamma function. Thus E(x, t) is bounded for any fixed t > 0.



Generalized heat kernel 743

(4) limt→0 E(x, t) = δ(x).

Proof. (1) From (21), since

∂n

∂xn
E(x, t) =

1

(2π)n

∫
Ω

∂n

∂xn
e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ

Thus E(x, t) ∈ C∞ for x ∈ Rn and t > 0.
(2) By computing directly, we obtain

(
∂
∂t

+ c2Lk
m

)
E(x, t) = 0

(3) We have

E(x, t) =
1

(2π)n

∫
Ω

e

�
−c2t((

�p
i=1 ξ2

i )
m−(

�p+q
j=p+1 ξ2

j )
m
)

k
+i(ξ,x)

�
dξ

|E(x, t)| ≤ 1

(2π)n

∫
Ω

e−c2t[(
�p

i=1 ξ2
i )

m−(
�p+q

j=p+1 ξ2
j )

m
]
k

dξ

By changing to bipolar coordinates

ξ1 = rω1, ξ2 = rω2, . . . , ξp = rωp

and
ξp+1 = sωp+1, ξp+2 = sωp+2, . . . , ξp+q = sωp+q,

where
∑p

i=1 ω2
i = 1 and

∑p+q
j=p+1 ω2

j = 1 Thus

|E(x, t)| ≤ 1

(2π)n

∫
Ω

e−c2t(r2m−s2m)
k

rp−1sq−1drdsdωpdωq

where dξ = drdsdωpdωq and dωp, dωq are the elements of surface area of the
unit sphere in Rp and Rq respectively. Since ω ⊂ Rn is the spectrum of E(x, t)
and we suppose 0 ≤ r ≤ R and 0 ≤ s ≤ T where R and T are constants. Thus
we obtain

|E(x, t)| ≤ ωpωq

(2π)n

∫ R

0

∫ T

0

e−c2t(r2m−s2m)
k

rp−1sq−1drds

=
ωpωq

(2π)n
M(t) for any fixed t > 0 in the spectrum Ω

=
22−n

πn/2

M(t)

Γ(p
2
)Γ( q

2
)
,

where

M(t) =

∫ R

0

∫ T

0

e−c2t(r2m−s2m)
k

rp−1sq−1drds

is a function of t, ωp = 2πp/2

Γ(p
2
)

and ωq = 2πp/2

Γ( q
2
)
. Thus, for any fixed t > 0, E(x, t)

is bounded.
(4) obvious by (22). �
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