Another Approach to Solution

of Fuzzy Differential Equations

C. Duraisamy
Department of Mathematics
Kongu Engineering College
Perundurai, Erode-638 052
Tamilnadu, India
cd@kongu.ac.in

B. Usha

Department of Mathematics
Kongu Engineering College
Perundurai, Erode-638 052
Tamilnadu, India
vikash_usha@yahoo.co.in

Abstract

In this paper, we have introduced and studied a new technique for getting the solution of fuzzy initial value problem.

Mathematics Subject Classification: 34A12; 65L05
Keywords: Fuzzy differential equations, Runge-Kutta method of order three, Trapezoidal fuzzy number

1 Introduction

Fuzzy differential equations are a natural way to model dynamical systems under uncertainty. First order linear fuzzy differential equations are one of the simplest fuzzy differential equations, which appear in many applications.

In the recent years, the topic of FDEs has been investigated extensively. The concept of a fuzzy derivative was first introduced by S. L. Chang and L. A. Zadeh in [3]. In this paper, we have introduced and studied a new technique for getting the solution of fuzzy initial value problem. The organized paper is as follows: In the first three sections, we recall some concepts and introductory materials to deal with the fuzzy initial value problem. In sections four and five, we present Runge-Kutta method of order three and its iterative solution for solving Fuzzy differential equations. The proposed algorithm is illustrated by an example in the last section.

2 Preliminary

A trapezoidal fuzzy number u is defined by four real numbers $k<\ell<m<n$, where the base of the trapezoidal is the interval $[k, n]$ and its vertices at $x=\ell, x=m$. Trapezoidal fuzzy number will be written as $u=(k, \ell, m, n)$. The membership function for the trapezoidal fuzzy number $u=(k, \ell, m, n)$ is defined as the following :

$$
u(x)=\left\{\begin{array}{cl}
\frac{x-k}{\ell-k}, & k \leq x \leq \ell \tag{1}\\
1, & \ell \leq x \leq m \\
\frac{x-n}{m-n}, & m \leq x \leq n
\end{array}\right.
$$

we will have :
(1) $u>0$ if $k>0$;
(2) $u>0$ if $\ell>0$;
(3) $u>0$ if $m>0$;
and (4) $u>0$ if $n>0$.
Let us denote R_{F} by the class of all fuzzy subsets of R (i.e. $\left.u: R \rightarrow[0,1]\right)$ satisfying the following properties:
(i) $\forall u \in R_{F}, u$ is normal, i.e. $\exists x_{0} \in R$ with $u\left(x_{0}\right)=1$;
(ii) $\forall u \in R_{F}, u$ is convex fuzzy set (i.e. $u(t x+(1-t) y) \geq \min \{u(x), u(y)\}$, $\forall t \in[0,1], x, y \in R$);
(iii) $\forall u \in R_{F}, u$ is upper semi continuous on R;
(iv) $\{\overline{x \in R ; u(x)>0}\}$ is compact, where \bar{A} denotes the closure of A.

Then R_{F} is called the space of fuzzy numbers (see e.g. [5]).
Obviously $R \subset R_{F}$. Here $R \subset R_{F}$ is understood as
$R=\left\{\chi_{\{x\}} ; x\right.$ is usual real number $\}$.

We define the r-level set, $x \in R$;

$$
\begin{equation*}
[u]_{r}=\{x \mid u(x) \geq r\}, \quad 0 \leq r \leq 1 ; \tag{2}
\end{equation*}
$$

Clearly, $[u]_{o}=\{x \mid u(x)>0\}$ is compact,
which is a closed bounded interval and we denote by $[u]_{\mathrm{r}}=[\underline{u}(r), \bar{u}(r)]$. It is clear that the following statements are true,

1. $\underline{u}(r)$ is a bounded left continuous non decreasing function over [0,1$]$,
2. $\bar{u}(r)$ is a bounded right continuous non increasing function over $[0,1]$,
3. $\underline{u}(r) \leq \bar{u}(r)$ for all $r \in(0,1]$,
for more details see [1],[2].
Let $D: R_{F} \times R_{F} \rightarrow R_{+} \mathrm{U}\{0\}$,
$D(u, v)=\operatorname{Sup}_{r \in[0,1]} \max \{|\underline{u}(r)-\underline{v}(r)|,|\bar{u}(r)-\bar{v}(r)|\}$, be Hausdorff distance between fuzzy numbers, where $[u]_{r}=[\underline{u}(r), \bar{u}(r)],[v]_{r}=[\underline{v}(r), \bar{v}(r)]$. The following properties are well-known (see e.g. [6]):

$$
\begin{aligned}
& D(u+w, v+w)=D(u, v), \quad \forall u, v, w \in R_{F}, \\
& D(k \cdot u, k \cdot v)=|k| D(u, v), \quad \forall k \in R, u, v \in R_{F}, \\
& D(u+v, w+e) \leq D(u, w)+D(v, e), \quad \forall u, v, w, e \in R_{F}
\end{aligned}
$$

and $\left(R_{F}, \mathrm{D}\right)$ is a complete metric space.

Lemma 2.1

If the sequence of non-negative numbers $\left\{W_{n}\right\}_{n=0}^{N}$ satisfy

$$
\left|W_{n+1}\right| \leq A\left|W_{n}\right|+B, \quad 0 \leq n \leq N-1,
$$

for the given positive constants A and B, then

$$
\left|W_{n}\right| \leq A^{n}\left|W_{0}\right|+B \frac{A^{n}-1}{A-1}, \quad 0 \leq n \leq N .
$$

Lemma 2.2

If the sequence of numbers $\left\{W_{n}\right\}_{n=0}^{N},\left\{V_{n}\right\}_{n=0}^{N}$ satisfy

$$
\begin{aligned}
& \left|W_{n+1}\right| \leq\left|W_{n}\right|+A \max \left\{\left|W_{n}\right|,\left|V_{n}\right|\right\}+B, \\
& \left|V_{n+1}\right| \leq\left|V_{n}\right|+A \max \left\{\left|W_{n}\right|,\left|V_{n}\right|\right\}+B,
\end{aligned}
$$

for the given positive constants A and B, then denoting

$$
U_{n}=\left|W_{n}\right|+\left|V_{n}\right|, 0 \leq n \leq N,
$$

we have, $\quad U_{n} \leq \bar{A}^{n} U_{0}+\bar{B} \frac{\bar{A}^{n}-1}{\bar{A}-1}, 0 \leq n \leq N$,
where $\bar{A}=1+2 A$ and $\bar{B}=2 B$.

Lemma 2.3

Let $F(t, u, v)$ and $G(t, u, v)$ belong to $C^{l}\left(R_{F}\right)$ and the partial derivatives of F and G be bounded over R_{F}. Then for arbitrarily fixed $r, 0 \leq r \leq 1$,

$$
D\left(y\left(t_{n+1}\right), y^{(o)}\left(t_{n+1}\right)\right) \leq h^{2} L(1+2 C)
$$

where L is a bound of partial derivatives of F and G, and

$$
C=\max \left\{\left|G\left[t_{N}, \underline{y}\left(t_{N} ; r\right), \bar{y}\left(t_{N-1} ; r\right)\right]\right|, r \in[0,1]\right\}<\infty .
$$

Theorem 2.4

Let $F(t, u, v)$ and $G(t, u, v)$ belong to $C^{l}\left(R_{F}\right)$ and the partial derivatives of F and G be bounded over R_{F}. Then for arbitrarily fixed $r, 0 \leq r \leq 1$, the numerical solutions of $\underline{y}\left(t_{n+1} ; r\right)$ and $\bar{y}\left(t_{n+1} ; r\right)$ converge to the exact solutions $\underline{Y}(t ; r)$ and $\bar{Y}(t ; r)$ uniformly in t.

Theorem 2.5

Let $F(t, u, v)$ and $G(t, u, v)$ belong to $C^{l}\left(R_{F}\right)$ and the partial derivatives of F and G be bounded over R_{F} and $2 L h<1$. Then for arbitrarily fixed $0 \leq r \leq 1$, the iterative numerical solutions of $\underline{y}^{(j)}\left(t_{n} ; r\right)$ and $\bar{y}^{(j)}\left(t_{n} ; r\right)$ converge to the numerical solutions $\underline{y}\left(t_{n} ; r\right)$ and $\bar{y}\left(t_{n} ; r\right)$ in $t_{0} \leq t_{n} \leq t_{N}$, when $j \rightarrow \infty$.

3 Fuzzy Initial Value Problem

Consider a first-order fuzzy initial value differential equation is given by

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in\left[t_{0}, T\right] \tag{3}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

where y is a fuzzy function of $t, f(t, y)$ is a fuzzy function of the crisp variable t and the fuzzy variable y, y^{\prime} is the fuzzy derivative of y and $y\left(t_{0}\right)=y_{0}$ is a trapezoidal or a trapezoidal shaped fuzzy number.

We denote the fuzzy function y by $y=[\underline{y}, \bar{y}]$. It means that the r -level set of $\mathrm{y}(t)$ for $t \in\left[t_{0}, \mathrm{~T}\right]$ is

$$
\begin{aligned}
& {[y(t)]_{r}=[\underline{y}(t ; r), \bar{y}(t ; r)],} \\
& {\left[y\left(t_{0}\right)\right]_{r}=\left[\underline{y}\left(t_{0} ; r\right), \bar{y}\left(t_{0} ; r\right)\right], \quad r \in(0,1]}
\end{aligned}
$$

we write $f(t, y)=[\underline{f}(t, y), \bar{f}(t, y)]$ and

$$
\begin{aligned}
& \underline{f}(t, y)=F[t, \underline{y}, \bar{y}], \\
& \bar{f}(t, y)=G[t, \underline{y}, \bar{y}] .
\end{aligned}
$$

Because of $y^{\prime}=f(t, y)$ we have

$$
\begin{align*}
\frac{f}{f}(t, y(t) ; r) & =F[t, \underline{y}(t ; r), \bar{y}(t ; r)] \tag{4}\\
\bar{f}(t, y(t) ; r) & =G[t, \underline{y}(t ; r), \bar{y}(t ; r)]
\end{align*}
$$

By using the extension principle, we have the membership function

$$
\begin{equation*}
f(t, y(t))(s)=\sup \{y(t)(\tau) \mid s=f(t, \tau)\}, s \in R \tag{6}
\end{equation*}
$$

so fuzzy number $f(t, y(t))$. From this it follows that

$$
\begin{equation*}
[f(t, y(t))]_{r}=[\underline{f}(t, y(t) ; r), \bar{f}(t, y(t) ; r)], r \in(0, l], \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
f(t, y(t) ; r) & =\min \{f(t, u) \mid u \in[y(t)] r\} \tag{8}\\
\bar{f}(t, y(t) ; r) & =\max \left\{f(t, u) \mid u \in[y(t)]_{r}\right\} .
\end{align*}
$$

Definition 3.1 A function $\mathrm{f}: R \rightarrow R_{F}$ is said to be fuzzy continuous function, if for an arbitrary fixed $t_{0} \in R$ and $\in>0, \delta>0$ such that

$$
\left|\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right|<\delta \Rightarrow \mathrm{D}\left[\mathrm{f}(\mathrm{t}), \mathrm{f}\left(\mathrm{t}_{0}\right)\right]<\epsilon
$$

exists.
Throughout this paper we also consider fuzzy functions which are continuous in metric D. Then the continuity of $f(t, y(t) ; r)$ guarantees the existence of the definition of $f(t, y(t) ; r)$ for $t \in\left[t_{0}, T\right]$ and $r \in[0,1][4]$. Therefore, the functions G and F can be definite too.

4 Runge -Kutta method of order three

Consider the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in\left[t_{0}, T\right] \tag{10}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Assuming the following Runge-Kutta method with three slopes

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+W_{1} K_{1}+W_{2} K_{2}+W_{3} K_{3} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=h f\left(t_{n}, y\left(t_{n}\right)\right) \\
& K_{2}=h f\left(t_{n}+c_{2} h, y\left(t_{n}\right)+a_{21} K_{1}\right) \\
& K_{3}=h f\left(t_{n}+c_{3} h, y\left(t_{n}\right)+a_{31} K_{1}+a_{32} K_{2}\right)
\end{aligned}
$$

and the parameters $W_{1}, W_{2}, W_{3}, c_{2}, c_{3}, a_{21}, a_{31} \& a_{32}$ are chosen to make y_{n+1} closer to $y\left(t_{n+1}\right)$.There are eight parameters to be determined .Now, Taylor's series expansion about t_{n} gives

$$
\begin{aligned}
y\left(t_{n+1}\right) & =y\left(t_{n}\right)+\frac{h}{1!} y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(t_{n}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(t_{n}\right)+\ldots \\
& =y\left(t_{n}\right)+\frac{h}{1!} f\left(t_{n}, y\left(t_{n}\right)\right)+\frac{h^{2}}{2!}\left[f_{t}+f f_{y}\right]_{t_{n}}+\frac{h^{3}}{3!}\left[f_{t t}+2 f f_{t y}+f^{2} f_{y y}+f_{y}\left(f_{t}+f f_{y}\right)\right]_{t_{n}}+\ldots
\end{aligned}
$$

If we set

$$
\begin{aligned}
& K_{l}=h f_{n} \\
& K_{2}=h f\left(t_{n}+c_{2} h, y\left(t_{n}\right)+a_{21} K_{1}\right) \\
& =h\left\{f_{n}+\frac{h}{1!}\left[c_{2} f_{t}+a_{21} f f_{y}\right]_{t_{n}}+\frac{h^{2}}{2!}\left[c_{2}{ }^{2} f_{t t}+2 c_{2} a_{21} f f_{t y}+a_{21}{ }^{2} f^{2} f_{y y}\right]_{t_{n}}+\ldots\right\} \\
& K_{3}=h f\left(t_{n}+c_{3} h, y\left(t_{n}\right)+a_{31} K_{1}+a_{32} K_{2}\right) \\
& =h\left\{f_{n}+c_{3} h f_{t}+\left[a_{31} K_{1}+a_{32} K_{2}\right] f_{y}+\frac{1}{2!}\left[\begin{array}{c}
c_{3}{ }^{2} h^{2} f_{t t}+2 c_{3} h\left(a_{31} K_{1}+a_{32} K_{2}\right) f_{t y} \\
+\left(a_{31} K_{1}+a_{32} K_{2}\right)^{2} f_{y y} \\
+\ldots
\end{array}\right]\right\} \\
& =h\left\{\begin{array}{l}
f_{n}+\frac{h}{1!}\left[c_{3} f_{t}+\left(a_{31}+a_{32}\right) f_{n} f_{y}\right]_{t_{n}}+\frac{h^{2}}{2!}\left[\begin{array}{l}
2\left(c_{2} f_{t}+a_{21} f f_{y}\right) a_{32} f_{y}+c_{3}{ }^{2} f_{t t} \\
+2 c_{3} a_{31} f_{n}+2 c_{3} a_{32} f_{t y} f_{n} \\
+\left(a_{31}{ }^{2}+a_{32}{ }^{2}+2 a_{31} a_{32}\right) f_{n}{ }^{2} f_{y y}
\end{array}\right] \\
+\ldots\left[\begin{array}{l}
\left.3!t_{n}{ }^{2} f_{t t}+2 c_{2} a_{21} f f_{t y}+a_{21}{ }^{2} f^{2} f_{y y}\right) a_{32} f_{y} \\
+\left(6 c_{3} a_{32} f_{t y}+6 a_{31} f_{n} a_{32} f_{y y}\right)\left(c_{2} f_{t}+a_{21} f f_{y}\right)
\end{array}\right]_{t_{n}} \\
+\ldots
\end{array}\right\}
\end{aligned}
$$

Substituting the values of $K_{1}, K_{2} \& K_{3}$ in (11), we get

$$
\begin{gather*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+\left[W_{1}+W_{2}+W_{3}\right] h f_{n}+h^{2}\left[W_{2}\left(c_{2} f_{t}+a_{21} f f_{y}\right)+W_{3}\left(c_{3} f_{t}+\left(a_{31}+a_{32}\right) f_{n} f_{y}\right)\right]_{t_{n}}+ \\
+\frac{h^{3}}{2}\left[W_{2}\left(c_{2}^{2} f_{t t}+2 c_{2} a_{21} f f_{t y}+a_{21}{ }^{2} f^{2} f_{y y}\right)+W_{3}\binom{2\left(c_{2} f_{t}+a_{21} f f_{y}\right) a_{32} f_{y}+c_{3}^{2} f_{t t}+2 c_{3} a_{31} f_{n}+}{2 c_{3} a_{32} f_{n} f_{t y}+\left(a_{31}{ }^{2}+a_{32}{ }^{2}+2 a_{31} a_{32}\right) f_{n}^{2} f_{y y}}\right] t_{t_{n}} \\
+\ldots \tag{13}
\end{gather*}
$$

Comparing the coefficients of $h, h^{2} \& h^{3}$ in (12) \& (13), we obtain

$$
\begin{array}{lll}
a_{21}=c_{2}, & a_{31}+a_{32}=c_{3}, & W_{1}+W_{2}+W_{3}=1, \\
\mathrm{c}_{2} W_{2}+c_{3} W_{3}=\frac{1}{2} & \mathrm{c}_{2}^{2} W_{2}+c_{3}^{2} W_{3}=\frac{1}{3} & \mathrm{c}_{2} a_{32} W_{3}=\frac{1}{6} .
\end{array}
$$

Multiplying the fourth and fifth equations by $c_{2} a_{32}$ and using the sixth equation of (14), we get

$$
c_{2}{ }^{2} a_{32} W_{2}+c_{3}\left(\frac{1}{6}\right)=\frac{1}{2} c_{2} a_{32}, \quad \mathrm{c}_{2}{ }^{3} a_{32} W_{2}+c_{3}{ }^{2}\left(\frac{1}{6}\right)=\frac{1}{3} c_{2} a_{32} .
$$

Eliminating W_{2} from these two equations, we find that no solution exists unless

$$
\begin{equation*}
\frac{3 c_{2} a_{32}-c_{3}}{6 c_{2}^{2} a_{32}}=\frac{2 c_{2} a_{32}-c_{3}^{2}}{6 c_{2}^{3} a_{32}} \text { or } a_{32}=\frac{c_{3}\left(c_{3}-c_{2}\right)}{c_{2}\left(2-3 c_{2}\right)} \tag{15}
\end{equation*}
$$

Usually, c_{2}, c_{3} are arbitrarily chosen and a_{32} is determined from (15). However, if $c_{2}=c_{3}$, then we immediately obtain from the fourth and fifth equations of (14), that $c_{2}=\frac{2}{3}$. The values of the remaining parameters are obtained from (14).

When $c_{2}=c_{3}$, we get $c_{2}=\frac{2}{3}$ and $a_{21}=\frac{2}{3}$. We get the values of the other parameters as $a_{31}=0, a_{32}=\frac{2}{3}, W_{1}=\frac{2}{8}, W_{2}=\frac{3}{8} \& W_{3}=\frac{3}{8}$.
Runge-Kutta method is obtained as

$$
\begin{equation*}
y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right] \tag{16}
\end{equation*}
$$

Where

$$
\begin{aligned}
K_{1} & =h f\left(t_{n}, y\left(t_{n}\right)\right) \\
K_{2} & =h f\left(t_{n}+\frac{2 h}{3}, y\left(t_{n}\right)+\frac{2}{3} K_{1}\right) \\
\text { and } \quad K_{3} & =h f\left(t_{n}+\frac{2 h}{3}, y\left(t_{n}\right)+\frac{2}{3} K_{2}\right) .
\end{aligned}
$$

5 Runge-Kutta method of order three for solving Fuzzy Differential Equations

Let $Y=[\underline{Y}, \bar{Y}]$ be the exact solution and $y=[\underline{y}, \bar{y}]$ be the approximated solution of the fuzzy initial value problem (3).

Let $[Y(t)]_{r}=[\underline{Y}(t ; r), \bar{Y}(t ; r)],[y(t)]_{r}=[\underline{y}(t ; r), \bar{y}(t ; r)]$.

Throughout this argument, the value of r is fixed. Then the exact and approximated solution at t_{n} are respectively denoted by

$$
\begin{aligned}
{\left[Y\left(t_{n}\right)\right]_{r} } & =\left[\underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right], \\
{\left[y\left(t_{n}\right)\right]_{r} } & =\left[\underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right](0 \leq n \leq N) .
\end{aligned}
$$

The grid points at which the solution is calculated are

$$
h=\frac{T-t_{0}}{N}, t_{i}=t_{0}+i h, 0 \leq i \leq N .
$$

Then we obtain, $\underline{Y}\left(t_{n+1} ; r\right)=\underline{Y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{l}+3 K_{2}+3 K_{3}\right]$,
where

$$
\begin{align*}
& K_{l}=h F\left[t_{n}, \frac{Y}{\underline{Y}}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right] \\
& K_{2}=h F\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}\right] \tag{17}\\
& K_{3}=h F\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]
\end{align*}
$$

and

$$
\bar{Y}\left(t_{n+1} ; r\right)=\bar{Y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right],
$$

where

$$
\begin{align*}
& K_{l}=h G\left[t_{n}, \underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right] \\
& K_{2}=h G\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}\right] \tag{18}\\
& K_{3}=h G\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]
\end{align*}
$$

Also we have

$$
\underline{y}\left(t_{n+1} ; r\right)=\underline{y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right],
$$

where

$$
\begin{align*}
& K_{I}=h F\left[t_{n}, \underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right] \\
& K_{2}=h F\left[t_{n}+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}\right] \tag{19}\\
& K_{3}=h F\left[t_{n}+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]
\end{align*}
$$

and

$$
\bar{y}\left(t_{n+1} ; r\right)=\bar{y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right],
$$

where

$$
\begin{align*}
& K_{l}=h G\left[t_{n}, \underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right] \\
& K_{2}=h G\left[t_{n}+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{l}\right] \tag{20}\\
& K_{3}=h G\left[t_{n}+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]
\end{align*}
$$

Clearly, $\underline{y}(t ; r)$ and $\bar{y}(t ; r)$ converge to $\underline{Y}(t ; r)$ and $\bar{Y}(t ; r)$, respectively whenever $h \rightarrow 0$.

6 Numerical Results

In this section, the exact solutions and approximated solutions obtained by Euler's method and Runge-Kutta method of order three are plotted in figure 1 and figure 2.

Example 6.1

Consider the initial value problem

$$
\begin{cases}y^{\prime}(t)=f(t), & t \in[0,1] \\ y(0)=(0.8+0.125 r & , 1.1-0.1 r)\end{cases}
$$

The exact solution at $t=1$ is given by

$$
Y(1 ; r)=[(0.8+0.125 r) e,(1.1-0.1 r) e], \quad 0 \leq r \leq 1 \text {. }
$$

Using iterative solution of Runge-Kutta method of order three, we have

$$
\begin{gathered}
y(0 ; r)=0.8+0.125 r, \\
\bar{y}(0 ; r)=1.1-0.1 r
\end{gathered}
$$

and by

$$
\begin{aligned}
& \underline{y}^{(0)}\left(t_{i+1} ; r\right)=\underline{y}\left(t_{i} ; r\right)+h \underline{y}\left(t_{i} ; r\right) \\
& \bar{y}^{(0)}\left(t_{i+1} ; r\right)=\bar{y}\left(t_{i} ; r\right)+h \bar{y}\left(t_{i} ; r\right),
\end{aligned}
$$

where $\mathrm{i}=0,1, \ldots, N-1$ and $h=\frac{1}{N}$. Now, using these equations as an initial guess for following iterative solutions respectively,

$$
\underline{y}^{\mathrm{j}}\left(t_{\mathrm{i}+1} ; r\right)=\underline{y}\left(t_{\mathrm{i}} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right],
$$

where

$$
\begin{aligned}
& K_{1}=h \underline{y}\left(t_{\mathrm{i}} ; r\right) \\
& K_{2}=h\left(\underline{y}\left(t_{\mathrm{i}} ; r\right)+\frac{2}{3} K_{1}\right) \\
& K_{3}=h\left(\underline{y}\left(t_{\mathrm{i}} ; r\right)+\frac{2}{3} K_{2}\right) .
\end{aligned}
$$

and

$$
\bar{y}^{\mathrm{j}}\left(t_{\mathrm{i}+1} ; r\right)=\bar{y}\left(t_{\mathrm{i}} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right],
$$

where

$$
\begin{aligned}
& K_{1}=h \bar{y}\left(t_{i} ; r\right) \\
& K_{2}=h\left(\bar{y}\left(t_{\mathrm{i}} ; r\right)+\frac{2}{3} K_{1}\right) \\
& K_{3}=h\left(\bar{y}\left(t_{\mathrm{i}} ; r\right)+\frac{2}{3} K_{2}\right) .
\end{aligned}
$$

and $\quad \mathrm{j}=1,2,3$. Thus, we have $\underline{y}\left(t_{i} ; r\right)=\underline{y}^{(3)}\left(t_{i} ; r\right)$ and $\bar{y}\left(t_{i} ; r\right)=\bar{y}^{(3)}\left(t_{i} ; r\right)$, for $i=1 \ldots N$.
Therefore, $\underline{Y}(1 ; r) \approx \underline{y}^{(3)}(1 ; r)$ and $\bar{Y}(1 ; r) \approx \bar{y}^{(3)}(1 ; r)$ are obtained.

Table 3, shows estimation of error for different values of $r \in[0,1]$ and h.
By minimizing the step size h, the solution by exact method and RK method almost coincides.

r	Exact solution
0	$2.174625,2.990110$
0.2	$2.242583,2.935744$
0.4	$2.310540,2.881379$
0.6	$2.378497,2.827013$
0.8	$2.446454,2.772647$
1	$2.514411,2.718282$

TABLE 1: Exact solution

h	0.1	0.01
0	$1.958468,2.692893$	$2.174515,2.989958$
0.2	$2.019670,2.643931$	$2.242468,2.935595$
0.4	$2.080872,2.594970$	$2.310422,2.881232$
0.6	$2.142074,2.546008$	$2.378375,2.826869$
0.8	$2.203276,2.497046$	$2.446329,2.772506$
1	$2.264478,2.448085$	$2.514283,2.718143$

TABLE 2: Approximated solution

r	0.1	0.01
0	0.513374	0.000262
0.2	0.514726	0.000264
0.4	0.516077	0.000265
0.6	0.517428	0.000266
0.8	0.518779	0.000266
1	0.520130	0.000267

TABLE 3: Error for different values of r and h.

Figure 1 : $\mathrm{h}=0.1$

Figure $2: h=0.01$

References

[1] J. J. Buckley and E. Eslami, Introduction to Fuzzy Logic and Fuzzy Sets, Physica-Verlag, Heidelberg, Germany. 2001.
[2] J. J. Buckley and E. Eslami and T. Feuring, Fuzzy Mathematics in Economics and Engineering,Physica-Verlag, Heidelberg, Germany. 2002.
[3] S. L. Chang and L. A. Zadeh, On Fuzzy Mapping and Control, IEEE Trans. Systems Man Cybernet., 2 (1972) 30-34.
[4] R. Goetschel and W. Voxman, Elementary Calculus, Fuzzy sets and systems, 18 (1986) 31-43.
[5] O. Kaleva, The Cauchy Problem for Fuzzy Differential Equations, Fuzzy sets and systems, 35 (1990) 389-396.
[6] M. L. Puri and D. A. Ralescu, Differentials of Fuzzy Functions, J. Math. Anal. Appl., 91 (1983) 321-325.

Received: June, 2009

