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In this paper, we have introduced and studied a new technique for getting
the solution of fuzzy initial value problem.
Mathematics Subject Classification: 34A12; 65L05

Keywords: Fuzzy differential equations, Runge-Kutta method of order three,
Trapezoidal fuzzy number

1 Introduction

Fuzzy differential equations are a natural way to model dynamical
systems under uncertainty. First order linear fuzzy differential equations are one
of the simplest fuzzy differential equations, which appear in many applications.
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In the recent years, the topic of FDEs has been investigated extensively. The
concept of a fuzzy derivative was first introduced by S. L. Chang and L. A.
Zadeh in [3]. In this paper, we have introduced and studied a new technique for
getting the solution of fuzzy initial value problem. The organized paper is as
follows: In the first three sections, we recall some concepts and introductory
materials to deal with the fuzzy initial value problem. In sections four and five,
we present Runge-Kutta method of order three and its iterative solution for
solving Fuzzy differential equations. The proposed algorithm is illustrated by an
example in the last section.

2  Preliminary

A trapezoidal fuzzy number u is defined by four real numbers
k < ¢ < m < n, where the base of the trapezoidal is the interval [k, n] and its
vertices at x = [/, x = m. Trapezoidal fuzzy number will be written as
u=(k ¢, m, n). The membership function for the trapezoidal fuzzy number
u=(k, ¢, m, n)is defined as the following :

e

x-k <y </
{ — k
1 , < x<m
u(x) = (1)
X —n
—, m < x < n
m — n

we will have :
(1) u>0 if k> 0;
(2) u>0ift >0;
(3) u>0 if m>0;
and (4) u>0 if n>0.
Let us denote Rr by the class of all fuzzy subsets of R (i.e. u : R — [0,1])
satisfying the following properties:
(1) Yu € Rr, u is normal, i.e. 3xy € R with u(x,) = 1;
(i1) Yu € Ry, u is convex fuzzy set (i.e. u(tx + (1 —¢) y) > min {u(x),u(y)},

Vte[0,1], x, y € R);
(ii1) Yu € Rp, u is upper semi continuous on R;
(iv) {x € R;u(x)> 0} is compact, where 4 denotes the closure of 4.

Then Rfis called the space of fuzzy numbers (see e.g. [5]).
Obviously R < Rr Here R — Ry is understood as
R= {;({ 1 x is usual real number} .

X
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We define the r-level set, x € R;
[u] = {elulx)>r}, 0<r<1; )
Clearly, [u],= {x\u(x)> 0} is compact,
which is a closed bounded interval and we denote by [u],= [u(7 ),u(r)]. Itis clear
that the following statements are true,
1. u (r) is a bounded left continuous non decreasing function over [0, 1],
2. u (r) is a bounded right continuous non increasing function over [0, 1],
3.u() < u(r)forallr €(0,1],
for more details see [1],[2].

Let D: R x Rr — R, U{0},

D(u,v)=Sup,eroy max {|u(r)=v(r)|,|u(r)=v(r)|}, be Hausdorff
distance between fuzzy numbers, where [u], =[u(r), u ()], [v], = [ v (), v ()]
The following properties are well-known (see e.g. [6]):

Du +wyv+w) =D, v), VuvweRp

D(ku, kv) =|k|D(u, v), ¥V ke R, uve R

Du+v,w+e)< D(uw)+Dve), Vuvw ecRp
and (Rr, D) is a complete metric space.

Lemma 2.1
If the sequence of non-negative numbers {W,} " satisfy

(Wil S AW, +B, 0L n<N-1,
for the given positive constants 4 and B, then

A" -1

W] < A" Wil + B=, 0<n<N.

Lemma 2.2
If the sequence of numbers {W,} V), {V,} ¥ satisfy
\Wasi| SIWul + A max {|W,|, |Va|} + B,
Vi1l S| Va| + A max {|W,|, |Val} + B,
for the given positive constants 4 and B, then denoting
U, =W, +1Va|, 0<n <N,
we have, UWSZ"UWL_/I%_]],OSnSN,

where 4 =1+ 24 and B =2B.

Lemma 2.3
Let F(t, u, v) and G(t, u, v) belong to C'(Rp) and the partial derivatives of
F and G be bounded over Rz Then for arbitrarily fixed r, 0 < r <1,

D(y(th )’ y(()) (tn+1 )) S hZL(] + ZC),
where L is a bound of partial derivatives of F and G, and

C=max{‘ G [tN,Z(tN;r),;(tN_l;r)] 7 E[O,l] }<oo.
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Theorem 2.4

Let F(t, u, v) and G(t, u, v) belong to C'(Rp) and the partial derivatives of
F and G be bounded over Rr. Then for arbitrarily fixed r, 0 < r <1, the numerical
solutions of y(z,,,;7) and ¥ (z,.,,7) converge to the exact solutions ¥ (z7) and

Y (t; ) uniformly in 7.
Theorem 2.5

Let F(t, u, v) and G(t, u, v) belong to C'(Rp) and the partial derivatives of
F and G be bounded over Ry and 2LA < 1. Then for arbitrarily fixed 0 < r <1,

the iterative numerical solutions of y U )(tn;r) and y () (t,;v) converge to the

numerical solutions y (#,; r)and y (¢, r)int,< ¢t < t,, when j— .

3 Fuzzy Initial Value Problem

Consider a first-order fuzzy initial value differential equation is given by
{y'(r) = f(t.y(1)),  telt,.T] 3)
y (t 0 ) =Y
where y is a fuzzy function of ¢, f (¢, y) is a fuzzy function of the crisp variable ¢
and the fuzzy variable y ,y'is the fuzzy derivative of y and y(t) = yy is a

trapezoidal or a trapezoidal shaped fuzzy number.
We denote the fuzzy function y by y = [y, ]. It means that the r-level set

ofy(¢) fort € [¢t,, T]is
D], =Ly, yr)
D)), =y y; 7). ¥ (ty; 1)) re(0,1]
wewrite f{t,y) =[f(ty). f(ty)] and
Sy =Fty ¥yl
[ty =Gt y, ¥
Because of y' = f(t, y) we have

S ;) = Fli, y (), ¥ (5 )] @)

fy®: 1) =Gt y(t: 1), (1)) (5)
By using the extension principle, we have the membership function

St y(®)(s) = sup{y(®)(z)ls =f(1,7)}, seR (6)
so fuzzy number f{t, y(¢)). From this it ti)llows that

Vit y)l- =1 f (. y®. 1), [t y@®): 1] re0.1], (7

where

S y@); ) =min { fit, wu € [y®)]} (8)

1y, 1) = max {fit, wlu € [y®)],}. (9)
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Definition 3.1 A function f: R — Ry is said to be fuzzy continuous function, if
for an arbitrary fixed 7y € R and € > 0, 6 > 0 such that

[t—to| <& = D [f(t), f(t))] <
exists.

Throughout this paper we also consider fuzzy functions which are
continuous in metric D. Then the continuity of f{7,y(2),r) guarantees the existence
of the definition of f(#, y(?); r) for ¢t € [t,,T] and r € [0,1] [4]. Therefore, the
functions G and F can be definite too.

4  Runge -Kutta method of order three

Consider the initial value problem

{yYf)=fYayﬁ)L telt, 7] (10)

y (t 0 ) =Y

Assuming the following Runge-Kutta method with three slopes
y(t,,)=y,)+ WK, +W,K, +W,K, (11)

where

K, =hf(t,.»(t,))
K, = hf(tn +czh>y(tn)+a21K1)

K, = hf(tn +03h,y(tn)+a31Kl +a32K2)

and the parameters W W, ,W,,c,,c;,a,,a, & a,, are chosen to make y, .,
closer to y(z,,,).There are eight parameters to be determined .Now, Taylor’s
series expansion about ¢, gives

h3

h, h
y(ZVtJrl):y(tn)_’_Fy(tn)JrEy (tn)_’_?y (tn)+

Ry GO e 8 IR PRV AR A R VR 0

(12)

If we set
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K, =nf,

K, :hf(tn +C2h’y(tn)+a21K1)

h h’
= h{fn +]_/[C2fx +a21ﬂy]tn+2_/[czzﬁz +202a2]ffty +a212f2fyy:|tn+"‘}
K; :hf(tn +03h,y(tn)+a3,K, +a32K2)
2,2
c.’ h +2c.h(a,K,+a,,K
_ fn+c3hf[+[a31K1+a32K2]fy+i/ o M 312 Bl
=h 2! +(a; K, +a;K,) fyy

I B2 Z(szt + azszy)a3zfy + c32fn
Jut 7[C3ft + (a31 + a32)fnfy]tn+ o/ +2¢5a;, f, + 2¢;a5, f,, f,

+ (a312 + a322 +2a;,a;, )fnzfyy .
3 ( 2 2 42 )
+h_ 3\e," fu +202a21ﬂzy +a, f fyy a32fy
3+ (603‘132ny + 6a3]fna32fyy Xczft + aZ]ffy) .

+ ...

Substituting the values of K,,K, & K, in (11), we get

J’(tn+1):J’(tn)+ [W1 +W, +W3]hfn +h2[W2(szt ""ayffy)"" Ws(c3fx +(as +a32)fnfv):|t”+

h’ Z(szr +a21ﬁ".)a32f +C32.ft +2c;a;, f, +
+7 w, (czzfn +2c,a,,0f, +a2]2f2fyy)+ w; ! 2 . 3 t 3
203a3zfnfzy + <a31 +ag” +2aza;, )fn fw

+..

(13)
Comparing the coefficients of /,h* & h’ in (12) & (13), we obtain
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a, =c¢,, a,, +a,, =c;, W, +W,+W, =1,
1 1 1
W, +e Wy =— ¢, W, +c’ W, =— ca, W, =—.
2 3 6
(14)

Multiplying the fourth and fifth equations by ¢, a,, and using the sixth equation
of (14), we get

2 1 1 3 2 1 1
¢, auh, +C3(g):502a32a C, anul, +c¢; (gjzgczasr

Eliminating W, from these two equations, we find that no solution exists unless
2

Jcya5 —c5  2c,a5 —c; _¢3(c5—¢,)

> = : or a;, =————"—. (15)

6c, a, 6c,” a;, cy(2=3c,)

Usually, c,,c, are arbitrarily chosen and a,, is determined from (15).

However, if ¢, =c,,then we immediately obtain from the fourth and fifth

equations of (14), that c, :%The values of the remaining parameters are

obtained from (14).
When ¢, =c,,we get c, =§ and a,, = % .We get the values of the other
2 2
parameters as a;, =0, a;, =§, w, =§, w, =§ & W, =§.
Runge-Kutta method is obtained as
1
y(tn+1):y(tn)+§[2K1+3K2+3K3] (16)

Where
=hf (t,,y(t,))

K]
2h 2
Kz:hf(fanT,J/(fn)Jr?Kz)

and K3=hf(tn+%,y(tn)+§K2).

5 Runge-Kutta method of order three for solving
Fuzzy Differential Equations

Let Y =[Y,Y ] be the exact solution and y = [ », ¥ ] be the approximated

solution of the fuzzy initial value problem (3).

Let (YOI, =[Y (t;7). Y (@0} @], =1y @ 1), ¥ (t: 7))
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Throughout this argument, the value of r is fixed. Then the exact and
approximated solution at ¢, are respectively denoted by

[Y(t)]- = [Y (ta;7), ?(tn; r)],
)l =y (t; 1),y (t;7)] (0 <n <N).

The grid points at which the solution is calculated are
. T-t,

gt =t,+ih, 0<i<N.

Then we obtain, Y (t,+;,7) = Y (t,; r)+%[2K1+3K2+3K3],

where Ki=hFt, Y (tur), Y (t,r)]
2h 2 — 2
K> = hF[l‘n'f‘? , X(tn;r) +§ K;,Y (tn;r)—'_g K]] (17)
K3:hF[tn+2?h ’ X(tn:r) +§ KZ: Y(tn:r)+§ KZ]
and
Y (tyer; 1) =Y (1, r)+% [2K;+3K,+3K3),
where Ki=hG[ty Y (tur), Y (t,1)]
K>=h G[tn+% Y (t,7) +§ K, )7(t,,;r)+§ K1 18)

K;=h G[tn+23—h Y (t,7) +§ K>, Y (tn,'r)+§ K]

Also we have

Z (tn+1,' I’) = Z (tn N l")‘i‘é [2K1+3K2+3K3],

where K] =h F[tn, Z (tn,'l”), )_/ (tn;r)]
Ko=hFlb 20y i) +5 Ki 3t > K (19)
K=t 20y () +3 Ko 3 i)+ Ko
and
5 (i 1) = 5 (10 0 (2K 3K 43K
where K;=hGlty, y(twr), Y (t7)]
KZZ h G[tn—’_% ) Z(tn;r) +§ K]) y(tn;r)_’_% K]] (20)

Ka=h G+ 2y )+ Ka 56+ K]
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Clearly, y(t;r)and y(t;r) convergeto Y (¢;r) and Y (t, 1), respectively

whenever i — 0.

6 Numerical Results

In this section, the exact solutions and approximated solutions obtained by
Euler’s method and Runge-Kutta method of order three are plotted in figure 1 and
figure 2.

Example 6.1

Consider the initial value problem
y'(e)=fle) t<lo.1]
1(0)=(0.8+0.125+ ,1.1-0.1r).

The exact solution at £ =1 is given by
Y(1;7)=[0.8+0.125r)e ,( 1.1-0.1r)e], 0<r<I.
Using iterative solution of Runge-Kutta method of order three, we have
y(0;r)=08+0.125r,

y(o; 7) ~1.1-0.1r

and by
X(O)(tm;r) =Yy (ti;r)+hz (ti;r)
y(O)(tHl;r) =y (ti;r)—’_hy (ti;r)’
wherei1=0,1,.. , N—land h= % . Now, using these equations as an initial

guess for following iterative solutions respectively,
Zj(fiﬂ; r)=y@r)+ %[2K1+3K2+3K3],
where Ki=h y (t; 1)
Ko=h(y (1 r)+ %Kl)
Ks=h(y (& ry+ % ).
and
Yt 1) = Yt r) + %[2K1+3K2+3K3],
where Ki=hy (t;r)

_ 2
Ky=h(y (t;r)+ gKl)

— 2
Ki=h(y (t;r)+ ng)
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and  j=1, 2 3. Thus, we have y (t:r) = 2(3)(11.;7’) and
y(t;r)=yP;r), fori=1...N.
Therefore, Y (1;r) = y ®)(1; r) and Y (I;ry=y ®)(1; r) are obtained.

Table 3, shows estimation of error for different values of » € [0,1] and A.

By minimizing the step size 4, the solution by exact method and RK
method almost coincides.

r Exact solution

0 2.174625,2.990110
0.2 2.242583,2.935744
0.4 2.310540,2.881379
0.6 2.378497,2.827013
0.8 2.446454,2.772647

1 2.514411,2.718282

TABLE 1: Exact solution

. h 0.1 0.01
0 1.958468,2.692893 2.174515,2.989958
0.2 2.019670,2.643931 2.242468,2.935595
0.4 2.080872,2.594970 2.310422,2.881232
0.6 2.142074,2.546008 2.378375,2.826869
0.8 2.203276,2.497046 2.446329,2.772506
1 2.264478,2.448085 2.514283,2.718143

TABLE 2: Approximated solution
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. 0.1 0.01
0 0.513374 0.000262
0.2 0.514726 0.000264
0.4 0.516077 0.000265
0.6 0.517428 0.000266
0.8 0.518779 0.000266
1 0.520130 0.000267

TABLE 3: Error for different values of » and 4.
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