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1     Introduction 

 
                  Fuzzy differential equations are a natural way to model dynamical 

systems under uncertainty. First order linear fuzzy differential equations are one 
of the simplest fuzzy differential equations, which appear in many applications.  
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In the recent years, the topic of FDEs has been investigated extensively. The 
concept of a fuzzy derivative was first introduced by S. L. Chang and L. A. 
Zadeh in [3].   In this paper, we have introduced and studied a new technique for 
getting the solution of fuzzy initial value problem.   The organized paper is as 
follows: In the first three sections, we recall some concepts and introductory 
materials to deal with the fuzzy initial value problem. In sections four and five, 
we present Runge-Kutta method of order three and its iterative solution for 
solving Fuzzy differential equations. The proposed algorithm is illustrated by an 
example in the last section.  
 
 
 

2     Preliminary 
 
 
 

 A trapezoidal fuzzy number u is defined by four real numbers                                   
k < l  < m < n, where the base of the trapezoidal is the interval [k, n] and its 
vertices at x = l , x = m. Trapezoidal fuzzy number will be written as 
u = (k, l , m , n).  The membership function for the trapezoidal fuzzy number  
u = (k , l , m , n) is defined as the following : 
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      we will have :  
  (1)  u > 0  if  k > 0;  
  (2)  u > 0  if l  > 0; 
  (3)  u > 0  if  m > 0;  
 and  (4)  u > 0   if  n > 0. 
 Let us denote RF by the class of all fuzzy subsets of R (i.e. u : R → [0,1]) 
satisfying the following properties: 
 (i) ∀u∈ RF, u is normal, i.e. ∃x0 ∈ R with u(xo) = 1; 
 (ii) ∀u∈ RF, u is convex fuzzy set (i.e. u(tx + (1 – t) y) ≥  min{ })y(u),x(u , 
       ∀t∈ [0,1], x, y ∈ R); 
 (iii) ∀u∈ RF,  u is upper semi continuous on R; 
 (iv) { 0)x(u ;Rx >∈ } is compact, where A  denotes the closure of A. 
 
 Then RF is called the space of fuzzy numbers (see e.g. [5]).  
Obviously R ⊂ RF. Here R ⊂ RF  is understood as  
  R = { }{ } number real usual is x;xχ . 
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We define the r-level set, x∈ R;  
    [ ] ( ){ } 1;   r  0               , r xu \x u r ≤≤≥=           (2) 
 Clearly, [ ] ( ){ } 0xu \x u 0 >=  is compact,  
which is a closed bounded interval and we denote by [u]r= [ )r(u),r(u ] .  It is clear 
that the following statements are true, 
 1. u (r) is a bounded left continuous non decreasing function over [0,1], 
 2. u (r) is a bounded right continuous non increasing function over [0,1], 
 3. u (r) ≤  u (r) for all r ∈ (0,1],  
for more details see [1],[2].  
 

Let D: RF × RF → R+ U{ }0 ,  
 ( )v,uD =Supr∈[0,1]

 max { } |)r(v)r(u| , |)r(v)r(u | −− ,  be Hausdorff 
distance between fuzzy numbers, where [u] r  =[u(r), u (r)], [v] r  = [ v (r), v (r)]. 
The following properties are well-known (see e.g. [6]): 
  D(u + w,v + w) = D(u, v), ∀  u,v,w∈ RF, 
  D(k.u, k.v) = |k|D(u, v),  ∀  k∈ R,  u,v∈ RF, 
  D(u + v, w + e) ≤  D(u,w) + D(v,e),  ∀  u, v, w, e∈ RF

 

and (RF, D) is a complete metric space. 
 

Lemma 2.1 
 If the sequence of non-negative numbers {Wn} N

0n=  satisfy  
 
  |Wn+1| ≤  A|Wn| + B ,  0 ≤  n ≤  N - 1,  
for the given positive constants A and B, then  

  |Wn| ≤  An |W0| + B Nn0      ,
1A
1An

≤≤
−
− . 

 

Lemma 2.2  
 If the sequence of numbers {Wn} N

0n= , {Vn} N
0n=  satisfy 

  |Wn+1| ≤ |Wn| + A max {|Wn|, |Vn|} + B, 
  |Vn+1| ≤ |Vn| + A max {|Wn|, |Vn|} + B,   
for the given positive constants A and B, then denoting 
 Un = |Wn| + |Vn |, 0 ≤ n ≤ N, 

we have,  Nn0  ,
1A
1AB UA  U

n

0
n

n ≤≤
−
−

+≤ , 

where  A  = 1 + 2A and B =2B. 
 

Lemma 2.3 
 Let F(t, u, v) and G(t, u, v) belong to C1(RF) and the partial derivatives of 
F and G be bounded over RF.  Then for arbitrarily fixed r, 0 ≤  r ≤ 1,  
  ( ) ( ) ( )( ) ( ),C21Lh    ty,tyD 2

1n
0

1n +≤++  
where L is a bound of partial derivatives of  F and G, and  
  ( ) ( )[ ] [ ]{ } .    0,1 ,  ; ,; ,   max 1 ∞<∈= − rrtyrtytGC NNN  
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Theorem 2.4 
 Let F(t, u, v) and G(t, u, v) belong to C1(RF) and the partial derivatives of 
F and G be bounded over RF. Then for arbitrarily fixed r, 0 ≤  r ≤ 1, the numerical 
solutions of ( )r;ty 1n+  and y ( )r;t 1n+  converge to the exact solutions Y (t;r) and 

Y (t; r) uniformly in t.  
Theorem 2.5 
 Let F(t, u, v) and G(t, u, v) belong to C1(RF) and the partial derivatives of 
F and G be bounded over RF  and 1.  Lh <2  Then for arbitrarily fixed  0 ≤  r ≤ 1, 
the iterative numerical solutions of y ( )j (tn;r) and y ( )j (tn;r) converge to the 
numerical solutions y ( tn; r) and y  ( tn; r) in Nn0 t   t   t ≤≤ , when . j ∞→  
 
 
 

3     Fuzzy Initial Value Problem 
 
 Consider a first-order fuzzy initial value differential equation is given by 
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yty
T,t  t      )),t(y,t(f)t(y

           (3) 

where y is a fuzzy function of t, f (t, y) is a fuzzy function of the crisp variable t 
and the fuzzy variable y,  y ′ is the fuzzy derivative of y and  y(t0) = y0 is a 
trapezoidal or a trapezoidal shaped fuzzy number. 
 We denote the fuzzy function y by y = [ yy, ]. It means that the r-level set 
of y(t) for t ∈  [t 0 , T] is 
  [y(t)] r  = [ y (t; r), y (t; r)], 
  [y(t0)] r = [ y (t 0 ; r), y  (t 0 ; r)],   r∈ (0,1] 

we write    f(t, y) = [ f (t, y), f (t, y)]   and  
                                       f (t, y) = F[t, y , y ], 

                                       f (t, y) = G[t, y , y ]. 
 

Because of y′  = f(t, y) we have 
  f (t, y(t); r) = F[t, y (t; r), y (t; r)]             (4) 

  f (t, y(t); r) = G[t, y (t; r), y (t; r)]             (5) 
 

By using the extension principle, we have the membership function 
  f(t, y(t))(s) = sup{y(t)(τ )\s = f( t,τ )},  s∈ R            (6) 
 

so fuzzy number f(t, y(t)). From this it follows that 
       [f(t, y(t))]r = [ f (t, y(t); r), f (t, y(t); r)], r∈ (0,1],                      (7) 
where   

f (t, y(t); r) = min { f(t, u)|u ∈ [y(t)]r}            (8)  

  f (t, y(t); r) = max { f(t, u)|u ∈ [y(t)]r}.            (9) 
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Definition 3.1 A function f: R → RF is said to be fuzzy continuous function, if 
for an arbitrary fixed t0 ∈ R and ∈ > 0, δ > 0 such that 
  |t – to| < δ ⇒ D [f(t), f(t0)] < ∈  
exists. 
 Throughout this paper we also consider fuzzy functions which are 
continuous in metric D. Then the continuity of f(t,y(t);r) guarantees the existence 
of the definition of f(t, y(t); r) for t ∈ [to ,T] and r ∈ [0,1] [4]. Therefore, the 
functions G and F can be definite too. 
 
 
4     Runge -Kutta method of order three  
 
Consider the initial value problem 

                         
[ ]
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                                           (10) 

Assuming the following Runge-Kutta method with three slopes 
    3322111 )()( KWKWKWtyty nn +++=+                                    (11) 
 
where   
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and the parameters 32312132 321     &     ,   ,   ,  ,   ,   ,  aaaccWWW  are chosen to make 1+ny  
closer to ( )1+nty .There are eight parameters to be determined .Now, Taylor’s 
series expansion about nt  gives 
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If we set 
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Substituting the values of  321 &, KKK  in (11), we get  
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Comparing the coefficients of 32 &, hhh  in (12) & (13), we obtain 
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Multiplying the fourth and fifth equations by 322  ac  and using the sixth equation 
of (14), we get 
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Eliminating 2W  from these two equations, we find that no solution exists unless  

         .
)c32(c
 )c(cca  or   

ac6

cac2
ac6

cac3

22

233
32

32
3

2

2
3322

32
2

2

3322

−
−

=
−

=
−

                 (15)                                  

Usually, 32 ,cc  are arbitrarily chosen and 32a  is determined from (15). 
However, if ,32 cc = then we immediately obtain from the fourth and fifth 

equations of (14), that .
3
2

2 =c The values of the remaining parameters are 

obtained from (14). 

            When 32 cc = ,we get 
3
2

2 =c  and 
3
2

21 =a .We get the values of the other 

parameters as 
8
3  &  

8
3  ,

8
2  ,

3
2  ,0 3213231 ===== WWWaa . 

Runge-Kutta method is obtained as  
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1)t(y)t(y +++=+               (16) 
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5     Runge-Kutta method of order three for solving            
      Fuzzy Differential Equations 
 
 Let Y = [Y ,Y ] be the exact solution and y = [ y , y ] be the approximated 
solution of the fuzzy initial value problem  (3). 
 Let  [Y(t)] r  = [Y  (t ; r), Y (t ; r)], [y(t)] r  = [ y (t ; r), y (t ; r)]. 
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 Throughout this argument, the value of r is fixed. Then the exact and 
approximated solution at tn are respectively denoted by 
  [Y(tn)] r  = [Y  (tn ; r),Y (tn ; r)] , 
              [y(tn)] r  = [ y  (tn ; r), y (tn ;r)] (0 ≤ n ≤ N). 
 The grid points at which the solution is calculated are 

   ihtt,
N

tTh i +=
−

= 0
0 , Ni ≤≤0 . 

Then we obtain,  Y (tn+1; r) = Y (tn ; r)+
8
1 [2K1+3K2+3K3], 

where                        K1 = h F[tn, Y (tn;r), Y (tn;r)]  

         K2 = h F[tn+
3

2h  , Y (tn;r) +
3
2  K 1, Y (tn;r)+

3
2  K 1]    (17)                       

         K 3 = h F[tn+ 3
2h  , Y (tn;r) +

3
2  K 2, Y (tn;r)+

3
2  K 2]   

  and  

Y (tn+1; r) = Y (tn ; r)+
8
1 [2K1+3K2+3K3], 

where                        K1 = h G[tn, Y (tn;r), Y (tn;r)]  
 

         K2  = h G[tn+
3

2h  , Y (tn;r) +
3
2  K 1, Y (tn;r)+

3
2  K 1]    (18)                     

        K 3  = h G[tn+ 3
2h  , Y (tn;r) +

3
2  K 2, Y (tn;r)+

3
2  K 2]       

Also we have 

y (tn+1; r) = y (tn ; r)+
8
1 [2K1+3K2+3K3], 

where                    K1 = h F[tn, y (tn;r), y (tn;r)]  
 

     K2 = h F[tn+ 3
2h  , y (tn;r) +

3
2  K 1, y (tn;r)+

3
2  K 1]          (19)                     

    K 3 = h F[tn+ 3
2h  , y (tn;r) +

3
2  K 2, y (tn;r)+

3
2  K 2]   

 and 

y (tn+1; r) = y (tn ; r)+
8
1 [2K1+3K2+3K3], 

where                  K1 = h G[tn, y (tn;r), y (tn;r)]  
 

   K2 = h G[tn+ 3
2h  , y (tn;r) +

3
2  K 1, y (tn;r)+

3
2  K 1]          (20)                             

  K 3 = h G[tn+
3

2h  , y (tn;r) +
3
2  K 2, y (tn;r)+

3
2  K 2]      
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 Clearly,  y (t ; r) and y (t ; r) converge to Y (t ; r) and Y (t ; r), respectively 
whenever h → 0.  

 

6     Numerical Results 
 
In this section, the exact solutions and approximated solutions  obtained by 

Euler’s method and Runge-Kutta method of order three are plotted in figure 1 and 
figure 2. 
Example 6.1 
 Consider the initial value problem  

  
( ) ( ) [ ]
( ) ( )⎩

⎨
⎧

−+=
∈=′

.r.. ,  r..y  
0,1t               ,tfty  

10111250800  

 The exact solution at t = 1 is given by 

  ( ) (( )[ ] 1.r0      ,er1.01.1 ,  e)r125.08.0r ; 1Y ≤≤−+=  
 Using iterative solution of Runge-Kutta method of order three, we have 

y (0; r) = r125.08.0 + , 

            y (0; r) = r1.01.1 −  
and by 

y (0) ( )rti ;1+  = y ( )rti ; +h y ( )rti ;  

 y (0) ( )rti ;1+  = y ( )rti ; +h y ( )rti ; , 

where i = 0, 1, . . .,N − 1 and h = 
N
1 . Now, using these equations as an initial 

guess for following iterative solutions respectively, 
 

       y j(ti+1; r) = y (ti; r) + 
8
1 [2K1+3K2+3K3], 

where                            K1 = h y  (ti; r) 

              K2 = h ( y  (ti; r)+ 
3
2 K1)  

              K3 = h ( y  (ti; r)+ 
3
2 K2). 

and 

       y j(ti+1; r) = y (ti; r) + 
8
1 [2K1+3K2+3K3], 

where                            K1 = h y  (ti; r) 

              K2 = h ( y  (ti; r) + 
3
2 K1) 

              K3 = h ( y  (ti; r) + 
3
2 K2). 
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and  j = 1, 2, 3. Thus, we have y ( )rti ;   = y (3) ( )rti ;  and 

 y ( )rti ; = y  (3) ( )rti ; , for i = 1. . . N. 
 Therefore, Y (1; r) ≈ y  (3)(1; r) and Y (1; r) ≈ y  (3)(1; r) are obtained. 
 

 
Table 3, shows estimation of error for different values of r ∈  [0,1] and h. 
 
 

 By minimizing the step size h, the solution by exact method and RK 
method almost coincides. 
 
 
 
 
 
 

r Exact solution 

0 2.174625,2.990110 

0.2 2.242583,2.935744 

0.4 2.310540,2.881379 

0.6 2.378497,2.827013 

0.8 2.446454,2.772647 

1 2.514411,2.718282 
 

TABLE 1: Exact solution 
 
 
 
 

h 
r 0.1 0.01 

0 1.958468,2.692893 2.174515,2.989958 

0.2 2.019670,2.643931 2.242468,2.935595 

0.4 2.080872,2.594970 2.310422,2.881232 

0.6 2.142074,2.546008 2.378375,2.826869 

0.8 2.203276,2.497046 2.446329,2.772506 

1 2.264478,2.448085 2.514283,2.718143 
 
                              TABLE 2: Approximated solution 
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h 
r 0.1 0.01 

0 0.513374 0.000262 

0.2 0.514726 0.000264 

0.4 0.516077 0.000265 

0.6 0.517428 0.000266 

0.8 0.518779 0.000266 

1 0.520130 0.000267 
                 
  
                TABLE 3: Error for different values of  r and  h. 
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