On the Positive Solutions of the Difference Equation System

$$
x_{n+1}=\frac{1}{y_{n-k}}, \quad y_{n+1}=\frac{x_{n-k}}{y_{n-k}}
$$
Mustafa Bayram
Department of Mathematics, Faculty of Arts and Sciences Fatih University, 34500, Buyukcekmece, Istanbul, Turkey
mbayram@fatih.edu.tr
\section*{S. Ebru Das}
Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, 34220, Davutpasa, Istanbul, Turkey eyeni@yildiz.edu.tr

Abstract

In this work, we study the positive solutions of the difference equation system $x_{n+1}=\frac{1}{y_{n-k}}, y_{n+1}=\frac{x_{n-k}}{y_{n-k}}, n=0,1,2, \ldots$ where x_{-k}, x_{-k+1}, \ldots, x_{0} and $y_{-k}, y_{-k+1}, \ldots, y_{0}$ are positive real numbers.

Mathematics Subject Classification: 39A10

Keywords: Difference equation system, Positive solution, Periodicity

1 Introduction

Our aim in this paper is to investigate the solutions of the difference equation system

$$
\begin{equation*}
x_{n+1}=\frac{1}{y_{n-k}}, y_{n+1}=\frac{x_{n-k}}{y_{n-k}}, n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{-k}, x_{-k+1}, \ldots, x_{0}, y_{-k}, y_{-k+1}, \ldots, y_{0} \in R^{+} \tag{2}
\end{equation*}
$$

Some papers related to this subject are the following:
Cinar[1] has investigated the periodicity of the difference equation system $x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}$. Yang, Liu and Bai [2] study the behavior of
positive solutions of the equation system $x_{n}=\frac{a}{y_{n-p}}, y_{n}=\frac{b y_{n-p}}{x_{n-q} y_{n-q}}$. Also Ozban [3] has investigated the periodic nature of solutions of the system of rational difference equations $x_{n+1}=\frac{1}{y_{n-k}}, y_{n+1}=\frac{y_{n}}{x_{n-m} y_{n-m-k}}$.

Similar to the references above, in this paper, we define (1) with conditions (2) and investigate the solutions of this difference equation system.

2 Main Results

Theorem 2.1 Assume that (2) holds and $k \geq 1$ be a integer. Let $\left\{x_{n}, y_{n}\right\}$ be a solution of equation system (1). Then all the solutions of the equation system (1) are periodic with $3(k+1)$.

From our assumption (2), we have all the solutions of the equation system (1) which have positive. So, we have:

$$
\begin{array}{ll}
x_{n+1}=\frac{1}{y_{n-k}} & y_{n+1}=\frac{x_{n-k}}{y_{n-k}} \\
x_{n+2}=\frac{1}{y_{n-k+1}} & y_{n+2}=\frac{x_{n-k+1}}{y_{n-k+1}} \\
\ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \\
x_{n+k+1}=\frac{1}{y_{n}} & y_{n+k+1}=\frac{x_{n}}{y_{n}} \\
x_{n+k+2}=\frac{1}{y_{n+1}}=\frac{y_{n-k}}{x_{n-k}} & y_{n+k+2}=\frac{x_{n+1}}{y_{n+1}}=\frac{1}{x_{n-k}} \\
x_{n+k+3}=\frac{y_{n-k+1}}{x_{n-k+1}} & y_{n+k+3}=\frac{1}{x_{n-k+1}} \tag{3}\\
x_{n+2 k+2}=\frac{y_{n}}{x_{n}} & y_{n+2 k+2}=\frac{1}{x_{n}} \\
x_{n+2 k+3}=\frac{y_{n+1}}{x_{n+1}}=x_{n-k} & y_{n+2 k+3}=\frac{1}{x_{n+1}}=y_{n-k} \\
x_{n+2 k+4}=x_{n-k+1} & y_{n+2 k+4}=y_{n-k+1} \\
\ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \\
x_{n+3 k+2}=x_{n-1} & y_{n+3 k+2}=y_{n-1} \\
x_{n+3 k+3}=x_{n} & y_{n+3 k+3}=y_{n}
\end{array}
$$

Therefore, the proof is completed.
Theorem 2.2 Suppose that (2) holds and $k \geq 1$ be a integer. Let $\left\{x_{n}, y_{n}\right\}$ be a solution of equation system (1) with $x_{-k}=a_{0}, x_{-k+1}=a_{1}, \ldots, x_{0}=a_{k}$
and $y_{-k}=b_{0}, y_{-k+1}=b_{1}, \ldots, y_{0}=b_{k}$. Then for $n=0,1,2, \ldots$ all the solutions of the equation system (1) are

$$
\begin{align*}
& x_{3(k+1) n+1}=\frac{1}{b_{0}} \quad, \quad y_{3(k+1) n+1}=\frac{a_{0}}{b_{0}} \\
& x_{3(k+1) n+2}=\frac{1}{b_{1}}, \quad y_{3(k+1) n+2}=\frac{a_{1}}{b_{1}} \\
& \text {................ } \\
& x_{3(k+1) n+k}=\frac{1}{b_{k-1}} \quad, \quad y_{3(k+1) n+k}=\frac{a_{k-1}}{b_{k-1}} \\
& x_{3(k+1) n+k+1}=\frac{1}{b_{k}} \quad, \quad y_{3(k+1) n+k+1}=\frac{a_{k}}{b_{k}} \\
& x_{3(k+1) n+k+2}=\frac{b_{0}}{a_{0}} \quad, \quad y_{3(k+1) n+k+2}=\frac{1}{a_{0}} \\
& x_{3(k+1) n+k+3}=\frac{b_{1}}{a_{1}} \quad, \quad y_{3(k+1) n+k+3}=\frac{1}{a_{1}} \tag{4}\\
& \text {............... } \\
& x_{3(k+1) n+2 k+2}=\frac{b_{k}}{a_{k}} \quad, \quad y_{3(k+1) n+2 k+2}=\frac{1}{a_{k}} \\
& x_{3(k+1) n+2 k+3}=a_{0} \quad, \quad y_{3(k+1) n+2 k+3}=b_{0} \\
& x_{3(k+1) n+2 k+4}=a_{1}, \quad y_{3(k+1) n+2 k+4}=b_{1} \\
& \text {. } \\
& x_{3(k+1) n+3 k+2}=a_{k-1} \quad, \quad y_{3(k+1) n+3 k+2}=b_{k-1} \\
& x_{3(k+1) n+3 k+3}=a_{k} \quad, \quad y_{3(k+1) n+3 k+3}=b_{k}
\end{align*}
$$

From our assumption (2), all the solutions of the equation system (1) are positive. Now, assume that $n>0$ and that our assumption holds for $n-1$. We try to show that the result holds for n. From our assumption for $n-1$, we
have the following:

$$
\begin{array}{ll}
x_{3(k+1) n-3 k-2}=\frac{1}{b_{0}} & y_{3(k+1) n-3 k-2}=\frac{a_{0}}{b_{0}} \\
x_{3(k+1) n-3 k-1}=\frac{1}{b_{1}} & y_{3(k+1) n-3 k-1}=\frac{a_{1}}{b_{1}} \\
\ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \\
x_{3(k+1) n-2 k-2}=\frac{1}{b_{k}} & y_{3(k+1) n-2 k-2}=\frac{a_{k}}{b_{k}} \\
x_{3(k+1) n-2 k-1}=\frac{b_{0}}{a_{0}} & y_{3(k+1) n-2 k-1}=\frac{1}{a_{0}} \\
\ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \tag{5}\\
x_{3(k+1) n-k-1}=\frac{b_{k}}{a_{k}} & y_{3(k+1) n-k-1}=\frac{1}{a_{k}} \\
x_{3(k+1) n-k}=a_{0} & y_{3(k+1) n-k}=b_{0} \\
\ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \\
x_{3(k+1) n-1}=a_{k-1} & y_{3(k+1) n-1}=b_{k-1} \\
x_{3(k+1) n}=a_{k} & y_{3(k+1) n}=b_{k}
\end{array}
$$

Also for n , we have the following:

$$
\begin{align*}
& x_{3(k+1) n+1}=\frac{1}{y_{3(k+1) n-k}}=\frac{1}{b_{0}} \quad y_{3(k+1) n+1}=\frac{x_{3(k+1) n-k}}{y_{3(k+1) n-k}}=\frac{a_{0}}{b_{0}} \\
& x_{3(k+1) n+2}=\frac{1}{y_{3(k+1) n-k+1}}=\frac{1}{b_{1}} \quad y_{3(k+1) n+2}=\frac{x_{3(k+1) n-k+1}}{y_{3(k+1) n-k+1}}=\frac{a_{1}}{b_{1}} \\
& \text {................................ } \\
& x_{3(k+1) n+k+1}=\frac{1}{y_{3(k+1) n}}=\frac{1}{b_{k}} \quad y_{3(k+1) n+k+1}=\frac{x_{3(k+1) n}}{y_{3(k+1) n}}=\frac{a_{k}}{b_{k}} \tag{6}\\
& x_{3(k+1) n+k+2}=\frac{1}{y_{3(k+1) n+1}}=\frac{b_{0}}{a_{0}} \quad y_{3(k+1) n+k+2}=\frac{x_{3(k+1) n+1}}{y_{3(k+1) n+1}}=\frac{1}{a_{0}} \\
& \text {............................. } \\
& x_{3(k+1) n+2 k+2}=\frac{b_{k}}{a_{k}} \quad y_{3(k+1) n+2 k+2}=\frac{1}{a_{k}}
\end{align*}
$$

$$
\begin{array}{ll}
x_{3(k+1) n+2 k+3}=\frac{1}{y_{3(k+1) n+k+2}}=a_{0} & y_{3(k+1) n+2 k+3}=\frac{x_{3(k+1) n+k+2}}{y_{3(k+1) n+k+2}}=b_{0} \\
x_{3(k+1) n+2 k+4}=a_{1} & y_{3(k+1) n+2 k+4}=b_{1} \\
\ldots \tag{7}\\
x_{3(k+1) n+3 k+2}=a_{k-1} & \ldots \ldots \ldots \ldots \ldots \\
x_{3(k+1) n+3 k+3}=a_{k} & y_{3(k+1) n+2 k+3}=b_{k-1} \\
& y_{3(k+1) n+3 k+3}=b_{k}
\end{array}
$$

Therefore, the proof is completed by induction.

References

[1] C. Cinar, On The Positive Solutions of The Difference Equation System $x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}$, Appl.Math.Compt., 158 (2004), 303-305.
[2] A. Y. Ozban, On The Positive Solutions of The Difference Equation System $x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}$, Jour.Math.Analy.Appli., 323-1 (2006), 26-32.
[3] X.Yang, Y. Liu, S. Bai, On the system of high order rational difference equations $x_{n}=\frac{a}{n_{n-p}}, y_{n}=\frac{b y_{n-p}}{x_{n-q} y_{n-q}}$, Appl.Math.Compt., 171-2 (2005), 853-856.

Received: September, 2009

