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Abstract 
    In this letter, we will consider variational iteration method (VIM) for finding 
analytical solutions of the coupled Schrödinger–KdV equation. The available 
analytical solutions of the coupled Schrödinger–KdV equation obtained by 
multiple traveling wave method are compared with VIM to examine the accuracy 
of the method. The results illustrate that VIM is an attractive method in solving 
the systems of nonlinear equations. 
 
Keywords: Variational iteration method (VIM); the coupled Schrödinger–KdV 
equation. 
 
 
1. Introduction 
 
    The solutions of the nonlinear evolution equations play an important role in 
the field of nonlinear wave phenomena.The exact solutions facilitate the 
verification of numerical methods when they exist. In the last few decades, 
substantial progress has been made on researches in this area and it continues with  
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this direction. Multiple traveling wave solutions of nonlinear evolution equations 
such as the coupled Schrödinger–KdV equation [1,2] have been successfully 
applied to get exact solutions by Fan [3]. The model equation for the coupled 
Schrödinger–KdV equation can be presented in the following form 

 

(1) 

 
where .1-i =   
    The VIM was first proposed by He [4,5] and systematically illustrated in 
1999 [6] and used to give approximate solutions of the problem of seepage flow in 
porous media with fractional derivatives. The VIM is useful to obtain exact and 
approximate solutions of linear and nonlinear differential equations. In this 
method, general Lagrange multipliers are introduced to construct correction 
functionals for the problems. The multipliers can be identified optimally via the 
variational theory. There is no need of linearization or discretization, and large 
computational work and round-off errors is avoided. It has been used to solve 
effectively, easily and accurately a large class of nonlinear problems with 
approximation [7, 8]. The main goal of the present study is to find the analytic 
solutions of the coupled Schrödinger–KdV equation.by the variational iteration 
method. 
 

 
2. Basic concepts of VIM 

   To illustrate the basic concepts of VIM, we consider the following 
differential equation  

 
    ( ),Lu N u g t+ =  (2) 

 
where ,L N  and ( )g t  are the linear operator, the nonlinear operator and a 
heterogeneous term, respectively. The variational iteration method was proposed 
by He where a correction functional for Eq. (1) can be written as 
 

1 0
( ) ( ) [ ( ) ( ) ( )]d , 0.

t

n n n nu t u t Lu N u g nλ τ τ τ τ+ = + + − ≥∫ % (3)

It is obvious that the successive approximations ju , 0j ≥  can be established by 
determining ,λ  a general Lagrangian multiplier, which can be identified 
optimally via the variational theory. The function nu%  is a restricted variation  

,i UwUU xxt +=

( ) ,6 2
xxxxxt Uwwww =++
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which means 0nuδ =% . Therefore, we first determine the Lagrange multiplier λ  
that will be identified optimally via integration by parts. The successive 
approximations 1( ), 0nu t n+ ≥  of the solution ( )u t  will be readily obtained 
upon using the obtained Lagrange multiplier and by using any selective function 

0.u When λ  determined, then several approximations ( ),ju t 0,j ≥ follow 
immediately. Consequently, the exact solution may be obtained by using   
 

n
lim .nu u
→∞

=  (4) 

 
 
3. Analytical solution 
 
    In this section, two different solutions of the coupled Schrödinger–KdV 
equation [3] will be examined by using the VIM. By using U = u + iv, one can 
separate Eq. (1) into real and imaginary parts. Therefore, one can get a (1 + 
1)-dimensional tripled system in the following form 

     
    

(5) 
 
 

In order to obtain VIM solution of  the Eq. (5), we construct a correction 
functional which reads    

 
(6) 

 
 

(7) 
 

 
 

(8) 
 
 
 
 

where 21,λλ and 3λ are the general Lagrangian multipliers and ),(~),,(~ txvtxu nn and 
),(~ txwn denote restricted variations, i.e. .0~~~ === nnn wvu δδδ  

 
 
 
Its stationary conditions can be obtained as follows 
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(9) 

 
(10) 

 
(11) 

 
The Lagrange multipliers can therefore, be identified as 1321 −=== λλλ and the 
variational iteration formula is obtained in the form of: 

 
(12) 

 
 

(13) 
 

 
 

(14) 
 
 
 
     

To examine the VIM for the coupled Schrödinger–KdV equation, one soliton 
solution and one Jacobi doubly periodic wave solution [3] are studied in the 
following sections. 
 

3.1. Jacobi periodic solution to coupled Schrödinger–KdV equation 

    The Jacobi exact solutions are given [3] by 

 
(15) 

 

(16) 
 

 
(17) 

 

where 221 ,,, cpba are arbitrary constants and ptx 2+=ξ and 
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(18) 

 
(19) 

 
(20) 

 
 
By using an initial condition to Eqs. (18)–(20), one  can write 

),(cos)0,(0 xxuu == )(sin)0,(0 xxvv == and .4/3)0,(0 == xww  Now we start with 
initial approximations and by the above iteration formula (12)–(14), we have  
 
 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

 
(25) 

 
(26) 

 
 

 
 
    In Fig. 1, the exact distribution of u(x, t) for the intervals 33 ≤≤− x and 

10 ≤≤ t is plotted. The approximated solution of ),(3 txu  is plotted in Fig. 2 for the 
same interval. In Fig. 3, the exact distribution of v(x, t) for the 
intervals 33 ≤≤− x and 10 ≤≤ t is plotted. The approximated solution of ),(3 txv is 
plotted in Fig. 4 for the same interval. Since the obtained w  is exact, it is not 
plotted. Fig. 5 shows the exact distributions of u(x, t) and v(x, t) for the 
interval 99 ≤≤− x at .1=t VIM solutions of ),(3 txu  and ),(3 txv for the 
interval 99 ≤≤− x at 1=t  are represented in Fig. 6. Fig. 7 shows the comparison 
between exact and VIM solutions of u(x, t) and v(x, t) for the same interval of x at 

.1=t  
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Fig. 1. Exact solution of u(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 
 
 
 
 
 
 

 
Fig.2. VIM solution of u3(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  
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Fig. 3. Exact solution of v(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 
 
 
 
 
 
 

 
Fig.4. VIM solution of v3(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  
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Fig. 5. Exact solutions of u(x, t) (a) and v(x, t) (b) for the interval 99 ≤≤− x at .1=t  
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Fig. 6. VIM solutions of u3(x, t) (a) and v3(x, t) (b) for the interval 99 ≤≤− x at .1=t  
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Fig. 7. The comparison between exact and VIM solutions of u(x, t) (a) and v(x, t) (b) for the interval 

99 ≤≤− x at .1=t Line stands for the figures of the VIM solution and point for the exact solution. 
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3.2. Soliton solution to coupled Schrödinger–KdV equation 

    The soliton exact solutions are given [3] by 

 
(27) 

 

(28) 
 

 
(29) 

 

where ptx 2+=ξ and t
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Then, Eqs. (27)–(29) takes the following form 
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In Fig. 8, the exact distribution of u(x, t) for the intervals 33 ≤≤− x and 10 ≤≤ t is 
plotted. The approximated solution of ),(4 txu  is plotted in Fig. 9 for the same 
interval. In Fig. 10, the exact distribution of v(x, t) for the intervals 33 ≤≤− x and 

10 ≤≤ t is plotted. The approximated solution of ),(4 txv is plotted in Fig. 11 for the 
same interval. Similarly, exact and approximated distributions of w(x, t) for the 
same intervals are plotted in Figs. 12 and 13, respectively. Fig. 14 shows the exact 
distributions of u(x, t), v(x, t) and w(x, t) for the interval 99 ≤≤− x at .1=t VIM  
solutions of ),(4 txu , ),(4 txv and ),(4 txw for the interval 99 ≤≤− x at 1=t  are 
represented  in  Fig. 15. Fig. 16 shows  the comparison  between  exact and  
VIM  solutions of u(x, t), v(x, t) and w(x, t) for the same interval of x at .1=t  
 

 
Fig. 8. Exact solution of u(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 

 
Fig.9. VIM solution of u4(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  
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Fig. 10. Exact solution of v(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 
 
 
 
 
 
 

 
Fig.11. VIM solution of v4(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  
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Fig. 12. Exact solution of w(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 
 
 
 
 
 
 
 

 
Fig.13. VIM solution of w4(x, t) for the intervals 33 ≤≤− x and .10 ≤≤ t  

 

 

 

t 

t 

x 

x 



 

 

Variational iteration method                                       835 

 
 
 

 

5 5

1.0

0.5

0.5

1.0

          

5 5

1.0

0.5

0.5

1.0

 

6 4 2 2 4 6

1.0

0.5

0.5

 
 

Fig. 14. Exact solutions of u(x, t) (a) and v(x, t) (b) and w(x, t) (c) for the interval 99 ≤≤− x at .1=t  
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Fig. 15. VIM solutions of u4(x, t) (a) and v4(x, t) (b) w4(x, t) (c) for the interval 99 ≤≤− x at .1=t  
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Fig. 16. the comparison between exact and VIM solutions of u(x, t) (a) and v(x, t) (b) and w(x, t) (c) for the 
interval 99 ≤≤− x at .1=t Line stands for the figures of the VIM solution and point for the exact solution. 

 

 
4. Discussion 
 
    In this work, we proposed the variational iteration method (VIM) for solving 
the coupled Schrödinger–KdV equation and compared our results with the exact 
solution. A clear conclusion can be drawn from the  results that the VIM 
provides highly accurate solutions for non-linear differential equations. This 
method can give very good approximations by means of a few terms for most 
cases. The results revealed that the VIM is a powerful mathematical tool for 
solving non-linear partial differential equations having wide applications in 
engineering. 
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