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Abstract

In this paper, we consider a Lotka-Volterra model with impulsive
effects on the prey and stage structure on the predator. We prove that
all solutions of the system are uniformly ultimately bounded, sufficient
conditions of the global attractivity of predator-extinction periodic so-
lution and the permanence of the system are obtained. These results
show that the behavior of impulsive effects on the prey play an impor-
tant role for the permanence of the system. Our results provide reliable
tactical basis for the biological resource management.
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1. Introduction

The predator-prey models with stage structure for the predator were in-
troduced or investigated by Jiao et al.[1].Since the immature predator takes τ
units of time to mature, the death toll during the juvenile period should be con-
sidered, so time delays have important biological meanings in age-structured
models. Hence many stage structured models with time delay were extensively
studied by Wang and Chen et al.[2]. In recently years, impulsive systems are
found in many domains of applied sciences[3]. The investigation of impulsive
delay differential equations is beginning, and impulsive delay differential equa-
tions are almost analyzed in theory by Liu and Ballinger [4]. Time delay and
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impulse are introduced into predator-prey models with stage structure, which
greatly enriches biologic background, but the system become nonautonomous,
which causes us greatly difficult in studying the model.

2. Model formulation

The model we consider is based on the following predator-prey system{
x′(t) = x(t)(r − ax(t) − by(t)),
y′(t) = cx(t)y(t) − dy(t).

(2.1)

where x(t) and y(t) are densities of the prey and the predator, respectively,
r > 0 is the intrinsic growth rate of prey, a > 0 is the coefficient of intraspecific
competition, b > 0 is the per-capita rate of predation of the predator. d is
the death rate of predator, c denotes the product of the per-capita rate of
predation and the rate of conversing pest into predator. According to the
nature of biological resource management, developing (2.1) by introducing the
stocking on prey at fixed moments and harvesting mature predator population
throughout the whole year or continuously. we consider the following impulsive
delay differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)(1 − x(t)
k

) − βx(t)y2(t)
1+αx(t)

,

y′
1(t) = kβx(t)y2(t)

1+αx(t)
− e−ωτ kβx(t−τ)y2(t−τ)

1+αx(t−τ)
− ωy1(t),

y′
2(t) = e−ωτ λβx(t−τ)y2(t−τ)

1+αx(t−τ)
− ωy2(t) − μy2

2(t),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ t �= nT,

Δx(t) = −px(t),
Δy1(t) = 0, Δy2(t) = 0,

}
t = nT, n = 1, 2 . . .

(ϕ1(s), ϕ2(s), ϕ3(s)) ∈ C+ = C([−τ, 0], R3
+), ϕi(0) > 0, i = 1, 2, 3.

(2.2)

Where y1(t), y2(t) represent the immature and mature predator densities re-
spectively. β is the predation rate of predator, ω is the death rate of predator,
we assume that the death rate of mature populations are of a logistic nature,
that is, proportional to the square of the population with proportionality con-
stant μ. α is the saturation which represents that a certain amount of predators
can prey on a limited amount of preys, although the preys are numerous. λ rep-
resents the conversion rate at which ingested prey in excess of what is needed
for maintenance is translated into predator population increase. p(0 ≤ p < 1)
represents partial impulsive harvest to preys by catching or pesticides, τ is
the mean length of the juvenile period, the capacity rate k is concerned with
the resources which maintain the evolution of the population, T is the period
of the impulsive of the prey. In this paper, we always assume the immature
predator population can not prey the prey population. Because the first and
third equations of (2.2) do not contain y1(t),we can simplify model and restrict
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our attention to the following model:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′(t) = rx(t)(1 − x(t)

k
) − βx(t)y2(t)

1+αx(t)
,

y′
2(t) = e−ωτ λβx(t−τ)y2(t−τ)

1+αx(t−τ)
− ωy2(t) − μy2

2(t),

⎫⎬⎭ t �= nT,

Δx(t) = −px(t),Δy2(t) = 0, t = nT, n = 1, 2 . . .
(φ1(s), φ3(s)) ∈ C+ = C([−τ, 0], R2

+), φi(0) > 0, i = 1, 3.

(2.3)

From the biological point of view, we only consider system (2.2) in the biolog-
ical meaning region: D = {(x, y1, y2)|x, y1, y2 ≥ 0},

3. Some important lemmas

Before we have the main results we need to give some lemmas which will
be used in the next.
Definition 3.1 System (2.3) is said to be uniformly persistent if there is an
η > 0 (independent of the initial data) such that every solution (S(t), I(t)) of
system (2.3) satisfies limt→∞ inf S(t) ≥ η, limt→∞ inf I(t) ≥ η.
Definition 3.2 System (2.3) is said to be permanent if there exists a compact
region D ∈ Ω such that every solution of system (2.3) will eventually enter
and remain in region D.
Lemma 3.1[5]. Considering the following delay equation:

x′(t) = ax(t − τ) − bx(t) − cx2(t),

where a, b, c, τ are all positive constants and x(t) > 0 for t ∈ [−τ, 0].
(1)If a < b then limt→∞ x(t) = 0, (2)If a > b, then limt→∞ x(t) = a−b

c
.

Lemma 3.2[6]. Let v∗ = b
a

1−e−aT

1−p−e−aT , considering the following impulsive
system: {

v′(t) = v(t)(a − bv(t)), t �= nT,
v(t+) = (1 − p)v(t), t = nT, n = 1, 2, . . . ,

(3.1)

where a, b > 0, 0 ≤ p < 1,then there exists a unique positive periodic solution
of system (2.2) ṽ(t) = aea(t−nT )

av∗−b+bea(t−nT ) , t ∈ (nT, (n + 1)T ], which is globally
asymptotically stable.

Lemma 3.3 There exists a constant L = k2(ω+r)2

4rω
> 0, such that x(t) ≤

L
k
, y1(t) ≤ L, y2(t) ≤ λL

k
for each positive solution (x(t), y1(t), y2(t)) of (2.2)

with all t large enough.

4. Predator-extinction periodic solution and global at-

tractivity of the periodic solution

We begin the analysis of (2.3) by first demonstrating the existence of a
’predator-extinction’ solution, in which predator individuals are entirely absent
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from the population permanently, i.e.,

y2(t) = 0, t ≥ 0 . (4.1)

This is motivated by the fact that y∗ = 0 is an equilibrium solution for the
variable y2(t), as it leaves ẏ2(t) = 0. Assuming (4.1), we know that the growth
of the prey in the time-interval nT < t ≤ (n + 1)T and give some basic
properties of the following subsystem of (2.3){

x′(t) = x(t)(r − r
k
x(t)), t �= nT,

x(t+) = (1 − p)x(t), t = nT, n = 1, 2 . . . ,
(4.2)

By Lemma 3.2, system (4.2) has a globally asymptotically stable positive pe-
riodic

x̃(t) =
kx∗

x∗ + (k − x∗)e−r(t−nT )
, t ∈ (nT, (n + 1)T ], n ∈ N,

therefore, system (2.3) has a predator-extinction periodic solution

(x̃(t), 0) = (
kx∗

x∗ + (k − x∗)e−r(t−nT )
, 0), t ∈ (nT, (n + 1)T ], n ∈ N,

which is globally asymptotically stable, where x∗ = k[(1−p)−e−rT ]
1−e−rT

Theorem 4.1 Let (x(t), y1(t), y2(t)) be any solution of system (2.3), if

R1 =
λβe−ωτ

ω

R0

1 + αR0
< 1, (4.3)

where R0 = kx∗
x∗+(k−x∗)e−rT , x∗ = k[(1−p)−e−rT ]

1−e−rT , then the ’predator-extinction’ pe-

riodic solution (x̃(t), 0, 0) is globally attractive.
Proof: It is clear that the global attraction of predator-extinction periodic
solution (x̃(t), 0, 0) of system (2.2) is equivalent to the global attraction of
predator-extinction (x̃(t), 0) of system (2.3), so we only dedicate to prove sys-
tem (2.3).
Since λβe−ωτ R0+ε0

1+α(R0+ε0)
< ω, we can choose ε0 to be sufficiently small such that

λβe−ωτ
kx∗

x∗+(k−x∗)e−rT +ε0

1+α[ kx∗
x∗+(k−x∗)e−rT +ε0]

< ω . (4.4)

where x∗ = k[(1−p)−erT ]
1−e−rT , It following from the first equation of system (2.3)

that x′(t) ≤ rx(t)(1− x(t)
k

), so we consider the following comparison impulsive
differential system {

x′
1(t) = rx1(t)(1 − x1(t)

k
), t �= nT,

x1(t
+) = (1 − p)x1(t), t = nT,

(4.5)
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by Lemma 3.2, system (4.5) has a globally asymptotically stable positive pe-

riodic solution x̃1(t) =
kx∗

1

x∗
1+(k−x∗

1)e−r(t−nT ) , t ∈ (nT, (n + 1)T ], n ∈ N, from com-

parison theorem of impulsive equation, we have x(t) ≤ x1(t) and x1(t) → x̃(t)
as t → ∞. Then there exists an integer k2 > k1, t > k2 such that

x(t) ≤ x1(t) < x̃(t) + ε0 < kx∗
x∗+(k−x∗)e−rT + ε0 =: ρ, t ∈ (nT, (n + 1)T ], n > k2,

(4.6)
From (2.3) and (4.6), we have that

y′
2(t) ≤ e−ωτ λβρy2(t − τ)

1 + αρ
− ωy2(t) − μy2

2(t), t > nT + τ, n > k2.

we consider the following impulsive equation

z′(t) = e−ωτ λβρz(t − τ)

1 + αρ
− ωz(t) − μz2(t), t > nT + τ, n > k2.

From (4.4), we have λβe−ωτ ρ
1+αρ

< ω. According to Lemma 3.1, we have

limt→∞ y(t) = 0, by using comparison theorem, we have limt→∞ y2(t) < limt→∞ y(t) =
0. Incorporating into the positivity of y2(t), we know that limt→∞ y2(t) = 0.
Therefore, for any ε1 > 0(sufficiently small), there exists an integer k3 > k2

such that y2(t) < ε1 for all t > k3T , by system (2.3), we obtain that x(t)(r −
r
k
x(t) − βε1) ≤ x′(t) ≤ rx(t)(1 − x(t)

k
), then we have z1(t) ≤ x(t) ≤ z2(t), and

z1(t) → z̃1(t), z2(t) → z̃2(t) as t → ∞, where z̃1(t) = (r−βε1)e(r−βε1)(t−nT )

(r−βε1)v∗−r/k+(r/k)e(r−βε1)(t−nT ) ,

v∗ = r/k
(r−βε1)

1−e−(r−βε1)T

1−p−e−(r−βε1)T and z̃2(t) = kx∗
x∗+(k−x∗)e−r(t−nT ) for t ∈ (nT, (n + 1)T ].

By using comparison theorem of impulsive equation, for any ε2 > 0 there exists
an integer k4 > k3, such that z̃1(t) − ε2 < x(t) < x̃(t) + ε2 for t > k4T , let
ε1 → 0, then it follows that x̃(t) − ε2 < x(t) < x̃(t) + ε2, t → ∞. Because ε2

arbitrary small, it follows that x(t) → x̃(t) as t → ∞. Therefore, predator-
extinction periodic solution (x̃(t), 0) is globally attractive. This completes the
proof.

5. Boundness and Permanence

The next work is to investigate the permanence of the system (2.3). Denote

R2 =
λβe−ωτ

ω

η1

1 + αη1

, η1 =
(k − λβL)(1 − p − e−r(1−λβL

k
)T )

1 − e−r(1−λβL
k

)T
(5.1)

Theorem 5.1 Suppose R2 > 1, then there is a positive constant q such each
positive solution (x(t), y2(t)) of system (2.3) satisfies y2(t) ≥ q if t is large
enough.
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Proof: Suppose (x(t), y2(t)) is any positive solution of system (2.3) with initial
conditions (2.4). The second equation of system (2.3) may be rewritten as
follows

y′
2(t) = (λβe−ωτ x(t)

1+αx(t)
− ω − μy2(t))y2(t) − λβe−ωτ d

dt

∫ t
t−τ

x(θ)y2(θ)
1+αx(θ)

dθ . (5.2)

Define V (t) = y2(t)+λβe−ωτ
∫ t
t−τ

x(θ)y2(θ)
1+αx(θ)

dθ. Calculating the derivative of V (t)

along the solution of system (2.3), it follows from (5.2) that

V ′(t) = (λβe−ωτ x(t)

1 + αx(t)
− ω − μy2(t))y2(t). (5.3)

Due to Lemma 3.3, (5.3) can be written

V ′(t) = (λβe−ωτ x(t)

1 + αx(t)
− ω − μ

λL

k
)y2(t)

for t large enough. Since R2 > 1, then there exists sufficiently small ε3 > 0
such that

λβke−ωτ

kω + λμL

η1 + ε3

1 + α(η1 + ε3)
> 1,

We claim that for any t0 > 0, it is impossible that y2(t) < y∗
2 for all t ≥ t0.

Suppose that the claim is not valid, then there is a t0 > 0 such that y2(t) < y∗
2

for all t ≥ t0. It follows from the first equation of (2.3) that for all t ≥ t0,

x′(t) > rx(t)(1 − λβL
k

− x(t)
k

). By comparison theorem of impulsive differential
equation, we know that there exists a t1(t1 > t0 + ω) such that the following
inequality holds for t > t1

x(t) ≥ k − λβL

[(k − λβL)v∗
1 − 1]e−r(1−λβL

k
)(t−nT ) + 1

− ε3, (5.4)

Where v∗
1 =

1 − e−r(1−λβL
k

)T

(k − λβL)(1 − p − e−r(1−λβL
k

)T )
. Thus

x(t) ≥ (k − λβL)(1 − p − e−r(1−λβL
k

)T )

1 − e−r(1−λβL
k

)T
− ε3 =: η1 − ε3

for t > t1. By (5.3) and (5.4), we have

V ′(t) = (λβe−ωτ η1 − ε3

1 + α(η1 − ε3)
− ω − μ

λL

k
)y2(t), t > t1. (5.5)

Set ym
2 = mint∈[t1,t1+τ ] y2(t), we will show that y2(t) ≥ ym

2 for all t ≥ t1.
Suppose the contrary, then there is a nonnegative constant T0 > 0 such that
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y2(t) ≥ ym
2 for t ∈ [t1, t1 + τ +T0], y2(t1 + τ +T0) = ym

2 and y′
2(t1 + τ +T0) < 0.

However, the second equation of system (2.3) imply that

y′
2(t1 + τ + T0) ≥ (λβe−ωτ η1

1 + αη1
− ω − μ

λL

k
)ym

2

for t > t1, which imply that t → ∞, V (t) → ∞. This a contradiction to
V (t) ≤ L. Hence, for any t0 > 0, it is impossible that y2(t) < ym

2 for all t ≥ t0.
Following, we are left to consider two cases:
(i) y2(t) ≥ ym

2 for all t large enough; (ii) y2(t) oscillates about ym
2 for all t large

enough. Let

q = min{ym
2

2
, ym

2 e−(ω+μλL
k

)T}.

In the following, we shall show that y2(t) ≥ ym
2 . There exist two positive

constant t1, t2 such that y2(t1) = y2(t1 + t2) = ym
2 and y2(t) < ym

2 , for all
t1 < t < t1 + t2. When t1 is large enough, the inequality x(t) > η1 holds
true for t1 < t < t1 + t2. Since y2(t) is continuous and bounded and is not
effected by impulses, we conclude that y2(t) is uniformly continuous. Hence
there exists a constant T1 (with 0 < T1 < τ and T1 is independent of the

choice of t1) such that y2(t) >
ym
2

2
for all t1 ≤ t ≤ t1 + T1. If t2 ≤ T1,

our aim is obtained. If T1 < t2 ≤ τ , from the second equation of (2.3) we
have that y2(t) ≥ −(ω + μλL

k
)y2(t) for t1 < t ≤ t1 + t2. Then we have

y2(t) ≥ ym
2 e−(ω+μλL

k
)T for t1 < t ≤ t1 + t2 ≤ t1 + τ since y2(t1) = ym

2 . It is clear
that y2(t) ≥ q for t1 < t ≤ t1 + t2. If t2 ≥ τ , by the second equation of (2.3),
then we have that y2(t) ≥ q for t1 + τ ≤ t ≤ t1 + t2. Since the interval [t1, t2] is
arbitrarily chose (we only need t1 to be large), we get that y2(t) ≥ q for all t
large enough. In view of our arguments above, the choice of q is independent
of the positive solution of (2.3) which satisfies that y2(t) ≥ q for sufficiently
large t. The completes the proof.
Theorem 5.2 System (2.3) is permanent provided R2 > 1.
Proof: Denote (x(t), y2(t)) be the solution of system (2.3). From the first

equation of (2.3), we have that x′(t) > rx(t)(1 − λβL
k

− x(t)
k

). Similar to (5.4),
we obtain that x(t) ≥ z̃3(t) − ε3 ≥ η1 − ε3 ==: p. By theorem 5.1, there exist
positive constants p, q and T2 such that x(t) ≥ p, y2(t) ≥ q for t ≥ T2. Set
Ω = {(x, y2) ∈ R2

+|p ≤ x(t) ≤ L
k
, q ≤ y2(t) ≤ λL

k
}. Then Ω is a bounded

compact region which has positive distance from coordinate axes. By theorem
5.1, one obtains that every solution of system (2.3) with initial condition (2.4)
eventually enters and remains in the region Ω. This completes the proof.
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