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Abstract 
 
The improved Navier-Stokes characteristic boundary conditions (NSCBC) 

method for direct numerical simulation of viscous flows, combining six order 

non-dissipative compact schemes with eight order filters，are studied in this paper. 

The new boundary conditions including transverse and viscous effects are applied 
to a comprehensive set of test problems, such as vortex-convection, counter flow, 
pressure wave propagation and boundary layer flow. The computational results 
show that these boundary conditions, which relate to the resolution, stability and 
reflection of numerical simulation, have wider applicability and higher numerical 
precision. 
 
Keywords: Navier-Stokes characteristic boundary conditions (NSCBC); 
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1. INTRODUCTION 
 
The treatment of boundary conditions is one of the most recurrent issues in 

computational fluid dynamics. Computational accuracy, in general, is strongly 
sensitive to boundary solution, which may be spoiled by spurious numerical 
reflections. These spurious reflections of physical information, adversely affect 
the accuracy and stability of the solutions. This matter is of vital to using high 
order non-dissipation schemes in direct numerical simulation of Navier-Stokes 
equations, because non-dissipation schemes have very low numerical dissipation,  
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it need more accurate boundary conditions to ensure numerical stability[1]. This 
motivates the necessity for strategies to reduce reflection and set up transparent 
boundary conditions.  

Several approaches were proposed to tackle boundary conditions. Techniques 
based on characteristics waves motivated much attention. Previous studies on the 
characteristic boundary conditions focused on how to suppress acoustic wave 
reflections at open boundaries. Initially for hyperbolic systems of Euler equations, 
these approaches decompose the flow in terms of characteristic waves traveling in 
the direction normal to the boundary, and reduce the boundary problem to a 
suitable dealing with the incoming waves. The identification of incoming waves 
allows, in principle, a direct control over boundary reflection, as the boundary 
condition can be designed to prevent incoming perturbations or to damp smoothly 
their amplitude. This one-dimensional approximation of the characteristic 
boundary conditions was successfully applied in multi-dimensional Euler 
equations by Thompson [2, 3]. 

An extension to the Navier–Stokes equations was discussed by Poinsot and 
Lele[1],  who developed a systematic approach to account for viscous terms 
under the locally one-dimensional inviscid (LODI) assumptions, known as 
Navier–Stokes characteristic boundary conditions. The mathematical 
well-posedness of boundary conditions in fluid dynamics was studied by J.Oliger 
et al [4] and L.Halpern[5]. The stability of the viscous boundary conditions was 
investigated by P.Dutt[6]. The NSCBC approach was further extended to consider 
multi-component reacting flows [7-8], and subsonic nonreflecting inflow 
conditions were also derived as a variation within the generalized formulation [9]. 

As an example of refinement of the NSCBC approach, Sutherland and 
Kennedy [10] recognized that the chemical source terms must be considered in the 
LODI formulation in order to reproduce realistic flame propagation through the 
boundary. Yoo et al [11] studied the counterflow diffusion flame simulations. It 
was found that transverse convection terms must also be properly accounted for in 
the modified LODI expression to achieve correct solution behavior. It was also 
observed that, similar to the pressure relaxation used in the existing nonreflecting 
boundary conditions, a proper relaxation treatment for the transverse terms was 
also necessary in order to ensure solution stability. These results suggest that, for 
a successful application to general turbulent combustion problems, the entire 
formulation of the characteristic boundary conditions may have to be re-examined 
for a complete resolution of these issues. Yoo and Im[12] attempted to revisit the 
full NSCBC formulation in a generalized context, by reconsidering many terms 
that have been neglected before. Generalized LODI approximations that were 
applicable for a wide range of reacting flow conditions were derived. 

 In this paper, the improved NSCBC method which is compatible with high 
order non-dissipative compact schemes [13] is addressed. A couple of typical  
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flows are tested to certificate the feasibility of the algorithm. It is concluded from 
computational results that this method has high resolution and more convenient 
applicability. 
 
 

2. CHARACTERISTIC BOUNDARY CONDITIONS 
 
The compressible Navier-Stokes equations can be transformed into a 

characteristic form, written as (in x -direction) [10]: 
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where (x, y, z) are the spatial coordinates in a rectangular Cartesian system, t is 

time, ρ is the mass density, ( )u,v,w are the components of flow velocity, p is the 

pressure, V is the velocity vector, 1 2( ) /c RT= γ is the speed of sound and the 

subscript t is represents tangential (y- and z-) directions. This formula can also be 
used for reaction flow if reaction source terms are added.  

The viscous terms is equation (1) are given by  
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                                   (2) 

where jkτ is the shear stress , j∇ is the Laplace operator, jq is the heat flux, 

j,k=1,2,3. 

     The ( )x
kL  in equation (1) are the wave-based quantities obtained from a 

characteristic analysis of the x -direction governing equations. These quantities 
give the temporal rate of the amplitudes of the different acoustic, convective or 
entropy waves at the outcome boundary, and are defined as follows: 
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  （3）                

where ( )x
kλ  are the characteristic velocities: 
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( )
1
x u c,λ = −  ( ) ( ) ( )

2 3 4
x x x u,λ = λ = λ =  ( )

5
x u cλ = +                              (4)  

Therefore, the problem of specifying inflow/outflow conditions is now reduced to 
the problem of determining the wave amplitude variations. According to 

characteristic system, the identification of the wave amplitude ( )x
iL depends on the 

sign of ( )x
iλ .  For the outward wave, ( )x

iL  is calculated by using one-side 

difference method from inside the computational domain. For incoming waves, 
however, they cannot be computed from outside the computational domain, and 
therefore additional physical considerations must be made. An important problem 

is how to identify the inward wave amplitude ( )x
iL . For an example, we will 

introduce the method of calculating ( )x
iL for subsonic outflow and inflow 

in x -direction. 
Subsonic outflow, inward wave amplitudes are addressed as: 

( ) ( ) ( )
1 1 1( ) (1 )x x xL p p a V∞= − + − ℑ +α       xlx =                        （5） 

( ) ( ) ( )
5 5 5( ) (1 )x x xL p p a V∞= − + − ℑ +α       0=x                        （6） 

Here, ( )x
iℑ and ( )x

iV denote the transverse and viscous terms, respectively. 

α and a are the relaxation coefficient of the pressure and transverse term, 
respectively. 

The former standard NSCBC [1] is given by: 
( ) ( )x
iL p p∞= −α                                       (7) 

The equation (7) considers the effect of pressure relaxation only, and neglect the 
effect of the transverse and viscous terms. When these terms effect weakly in 
some flow condition, it will not influence the resolution and stability of numerical 
simulation. When the derivative of physical quantity in transverse terms is large 
enough for some flow simulations, this approximation can cause numerical 
instability and numerical reflection. We will explain it in details in the following 
part, and prove the scientism and rationality of Navier-Stokes characteristic 
boundary conditions with transverse and viscous effects.  

Similar to pressure relaxation method, improved subsonic inflow boundary 
conditions [11] are adopted in this paper. In the treatment of the nonreflecting 
inflow, the inlet values of the flow velocity vector and temperature are imposed by 
using a set of relaxation terms. The modified LODI relations correspond to a set 
of linear relaxation constraints between the inflow variables and their prescribed  
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upstream values. Comparing with direct subsonic inflow conditions [1], this 
method has wider applicability, and superiority. In x -direction, subsonic inflow, 
inward wave amplitudes are addressed as:  

0=x ： 
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where 0000 ,,, wvuT  and 
xxxx llll wvuT ,,, is the accurate value of physical variables 

at the inflow boundary, iβ  is the corresponding relaxation coefficients.  

It has paid many attentions that control quantities of Navier-Stokes equations 
in the conservation form are conservation variables, but the physical boundary 
conditions are usually expressed by primitive variables and their derivatives. In 
this paper, equations (1) are directly solved using primitive variables expressed by 
Sutherland’s method [10]. For the corner point, the characteristic method is 
applied simultaneously in both directions, and the boundary condition is given by: 
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where ( )y
kλ  are the characteristic velocities 
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1 2 3 4 5
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3. NUMERICAL TEST AND ANALYSIS 
 
In the numerical simulation of Navier-Stokes equations, six order compact 

schemes are adopted for transverse terms and viscous terms, and three order and 
four order compact schemes are applied in the boundary points and near boundary 
points, respectively. Four step Runge-Kutta method is used in the time-integartion. 
The artificial dissipation [14] is replaced by eight order filters. Next, numerical 
test of some typical flows is studied and analyzed. 
3.1 Vortex convection in the free flow 

The two-dimensional vortex convects through a non-reflecting boundary. 
This is a typical test used to evaluate boundary conditions. The configuration 

corresponds to a single vortex in a uniform flow field along the 1x -direction. The 

initial flow field is prescribed by: 

      1/ ,
0

u u y
v

x

ρ∞

∂Ψ⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ∂⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂Ψ⎝ ⎠ ⎝ ⎠ −⎜ ⎟∂⎝ ⎠
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exp( )

2 c

x x y y
C

R
− + −

Ψ = −           (13) 

where Ψ is a stream function for an incompressible vortex, C is the vortex 

strength， cR is the vortex radius，and 0 0( )x , y is the location of the vortex center[1]。

The initial pressure field corresponding to the vortex is given by:  
2 22

0 0
2 2

( ) ( )
exp( )

2c c

x x y yCp p
R R∞

− + −
= − −ρ                           (14) 

The flow conditions are specified as / 0.1Ma u c∞= =  where Ma is Mach number, 

u∞ is the free flow velocity, c is sound velocity, / 0.1c xR l = , /( ) 0.0025xC cl = − . The 

domain size is mmmm 0.20.2 ×  with 200 grids in each direction. The reference 
temperature and pressure are 300K and 1 atm, respectively, and the fluid is air. 
The maximum velocity induced by the vortex is scm /52.10 . 

 At the inflow boundary 0x = , standard non-reflecting subsonic inflow 

boundary condition [1] is applied. At the outflow boundary xx l= , three different 

non-reflecting boundary conditions are tested by using A1, A2 and A3, 
respectively, in order to illustrate the effect of transverse term and viscous terms 
in boundary conditions. 

A1: Standard non-reflecting boundary condition ( )
1 ( )xL p p∞= −α  is adopted. From  
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equation (1), we can obtain the effective boundary condition: 

( ) ( )
1 1( ) 2 ( ) 2( )x xp uc p p V

t t ∞

∂ ∂
− = − − + ℑ +

∂ ∂
ρ α                         (15) 

A2: ( ) ( ) ( )
1 1 1( )x x xL p p V∞= − + ℑ +α  is applied, which is referred as Navier-Stokes 

characteristic boundary conditions with transverse terms and viscous terms. So the 
effective boundary condition has only pressure relaxation term in RHS: 

 ( ) 2 ( )p uc p p
t t ∞

∂ ∂
− = − −

∂ ∂
ρ α                                   (16) 

A3: The modified characteristic boundary condition (5) is adopted. The transverse 

term in ( )
1
xL  has differences with the accurate vales of physical flows in some 

cases. Similar to the pressure relaxation method, relaxation of transverse term is 
adopted. In following standard asymptotic analysis at low Mach number flows 
[12], an estimate of an appropriate relaxation coefficient a Ma=  is derived, and 
effective boundary conditions become: 

( )
1( ) 2 ( ) 2 xp uc p p MaS

t t ∞

∂ ∂
− = − − −

∂ ∂
ρ α                             (17) 

In the y -direction, the standard non-reflecting boundary condition [1] is applied 

in test A1-A3.The additional viscous conditions are: 

in y -direction: / 0,yq y∂ ∂ =  / 0yx yτ∂ ∂ = ; 

    in x -direction: / 0xx xτ∂ ∂ = ( 0)x = , / 0xq x∂ ∂ =  and / 0xy xτ∂ ∂ = ( )xx l= . 

 
         A1                        A2                      A3 

Fig.1 Vorticity isocontours ( s/1 ) at sec8.28 μ=t  

The vorticity isocontours passing through the outflow boundary are shown in 
Fig.1 for A1-A3. No significant difference can be found, even if different 
boundary boundary conditions are used. The center region of the vortex for A1 
and A2 are slightly distorted, showing an upward and downward motion at the  
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boundary, respectively. On the other hand, yx,  velocity is shown in Fig.2. It 

reveals that the numerical artifacts arise because of the implementations of the 
incorrect boundary condition. From the isocontours, contrast to A3, A1 yields 
acceleration in the u velocity and a deceleration in the v  velocity, while A2 
leads to an opposite behavior. 

  
    A1                         A2                       A3 

Fig.2 yx, velocity isocontours ( scm / ) at sec8.28 μ=t  

 

 



 

Navier-Stokes characteristic boundary conditions                     887 
 
 

 
  A1           A2          A3 

Fig.3 Temporal variations of pressure isocontours (atm). 

(from top to bottom, t=23.0; 28.8; 34.56 μ sec) 

The temporal variations of pressure isocontours for A1-A3 are shown in Fig.3. 
The results indicate that a significant amount of spurious pressure field generates 
at the boundary employing A1 condition without the transverse term and viscous 
term. The visible numerical reflecting appears from the velocity and pressure field, 
as the vortex travels out of the boundary and the shape changes. As the vortex 

approaches the boundary, the 
y
vp
∂
∂γ  term in equation (15) becomes dominant. 

Therefore, the effective boundary conditions cause the numerical reflecting, and 
these terms can not be ignored. The transverse term and viscous term are included 
in the boundary conditions for A2; hence the pressure variation is more confined 
near the boundary with smaller amplitude than those for A1. Since the leading 

order in equation (16) is 0=
∂
∂

t
ucρ , its net effect is to damp out the x -direction 

velocity near the boundary. All the neglected terms are reconsidered for A3, and 
the transverse term relaxation is also adopted. The results show that there is not 
numerical reflecting in the pressure and velocity field, and the vortex shape does 
not change as it travels out of the boundary. 
3.2 Counter flow  
The counter flow is used in the boundary condition test. A true challenge occurs 
in a counterflow configuration where velocity needs to be imposed at the two 
opposing inflow boundaries. It is hard to control the inflow velocity and the 
absolute value of pressure. The modified inflow characteristic boundary 
condition is applied. Initial flow condition is same as C.S.YOO [11].Three 
different boundaries are tested and compared in this paper.  

B1：Modified inflow conditions (8) (9) are used in x -direction, but transverse 

term and viscous terms are not included. In the y -direction, standard 
characteristic boundary condition A1 is applied.  
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B2：Modified inflow conditions (8) (9) are used in x -direction, and transverse 

term and viscous term are considered. In the y -direction, standard 
characteristic boundary condition A1 is applied. 

B3：Modified inflow conditions (8) (9) are used in x -direction, and transverse 

term and viscous term are considered. In the y -direction, modified 
characteristic boundary condition A2 is applied. 

The results of B1 are shown in Fig.4, the u velocity isocounters is distorted, 
inlet velocity value changes, and the background pressure values can not 
maintain. The value in the center reaches 1.37 atm. The results of B2 are shown 
in Fig.5, the inlet velocity value is preserved, but the background pressure value 
become even large, reaches 1.49 atm in the center. Considering transverse terms 
in both directions, the results of B3 are shown in Fig.6. The inflow velocity and 
background pressure are both preserved. The center value of pressure is 1.0011 
atm, which is as same as the reference’s value [11]. Our numerical algorithms, 
which combines improved NSCBC method with high order non-dissipative 
compact schemes, has good reliability. 

 
Fig.4 Pressure and x -direction velocity at mst 10= for condition B1 

 
Fig.5 Pressure and x -direction velocity at mst 10= for condition B2 
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Fig.6 Pressure and x -direction velocity at mst 10= for condition B3 
 
 
 
3.3 Pressure wave propagation in stationary flow 

 
The pressure field is initialized with a pressure pulse:  

2 2
0 0

2 2
0 0

( ) ( )
0

( ) ( )
0

( ) sin( )

( ) sin( )

B x x y y

B x x y y

p A x x e t
x
p A y y e t
y

− − + −

− − + −

∂
= −

∂
∂

= −
∂

ω

ω
                             (18) 

The reference variables for scale, density, velocity, temperature, pressure, time, 

viscosity are λ  (wave length), ∞ρ , c , ∞T , 2c∞ρ , / cλ and ∞μ  respectively. The 

computational domain is a square ( 12 12xl yl× = × ).The pressure wave is induced 

at center of the square. The parameters are 0.005, 400, 2A B= = =ω π .Reynolds 
number is 10000. 
 

 Modified NSCBC is adopted at the boundaries. Pressure counters at time 

2、4 and 6 are presented in Fig 7(a)、(b) and (c). As wave pass through the 

boundary, the pressure counter shows is displaied in Fig.7 (d). The distribution 
of pressure of x -direction centerline is shown in Fig.7(e) at time 20. Once the 
pressure front meets the boundary, the boundary condition is remarkably capable 
of preserving the correct physical information at the boundary edges and 
corners. 
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（a）                                   （b） 

 

      （c）                                  （d） 

 

 

（e） 

Fig.7 Evolution of the pressure distribution 
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3.4 Subsonic boundary layer flow over the flat plate  

Next,we study the boundary layer flow over the flat plate at aM =0.5 and 

Re =100 which is based on the inflow displacement thickness. The domain length 
and heights are both 30. The number of grid points is 64 32× . The modified 
NSCBC condition is used at upper free stream flow and outflow boundary. The 
distribution of computational velocity and temperature normalized by the edge 
values at 55.7x = is shown in Fig.8. In spite of the quite low Reynolds number and 
coarse gird, comparing computational results with Blasius solution, the agreement 
is quite good. Fig.9 gives the pressure at the wall, which almost keeps the same, 
and there is nearly no non-physical pressure reflecting at the outflow boundary.    
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Fig.8 distribution of velocity and temperature at 55.7x =  
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p e
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1
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Fig.9 pressure at the wall 

 
 

4 CONCLUSIONS 
 
A number of lingering issues of spurious solution behavior has encountered 

in some flow simulations in the past using standard NSCBC. In these flows the  
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transverse terms and viscous terms affect the boundary conditions. Improved 
Navier-Stokes characteristic boundary conditions using high order schemes were 
adpoted in this paper. A couple of typical cases were tested to certificate the 
feasibility of the algorithm. This method has more convenient applicability, high 
resolution, and smaller reflecting wave amplitude at the boundary. Obviously, it is 
concluded that this algorithm is quite suitable for direct simulation of 
Navier-Stokes equations. 
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