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Abstract 
 

     Although many factors determine Google's overall ranking of 
search engine results, Google maintains that the heart of its search en-
gine software is PageRank, the eigenvector corresponds to the maxim-
al eigenvalue in the Google matrix. In this note, we deals with a very 
special case of this positive matrix; i.e. when it is a positive convex 
matrix, then we provide a new way which can be used as a direct me-
thod, to find the eigenvalues of this type of matrices. Although in 
practice, the likelihood of this scarce phenomenon is improbable, but 
it is worth mentioning. 
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1   Introduction 
 
The computation of the eigenvalues a given matrix is one of the most important 
subjects in applied mathematics. There are several numerical methods to approx-
imate these eigenvalues, such as Power Iteration Method or Rayleigh Quotient 
Method, etc. that are vastly discussed in literature (see, for example, [6]). Unfor-
tunately, the computations costs of these methods are so much and more precision 
has been wanted in the real world, (see [4]), like the finding of Google matrix ei-
genvalues which play an important role in calculation of PageRank (the eigenvec-
tor of the Google matrix corresponds to the maximal eigenvalue, i.e., 1).  
     This paper considers a class of special matrices (ݎ െconvexity preserving ma-
trices for all ݎ ൑ ݇) that are significant in many applications, for instance in  com-
puter aided geometric design (see [1,2,5]). As an another instance, in finding the  



 
 

906                                                                                                        F. Soleymani 
 
 
 
PageRank. Note that, Google founders Sergey Brin and Larry Page With the fi-
nancial assistance of a small group of initial investors founded the Web search 
engine company Google, Inc. in September 1998. 
 
     Approximately 94 million American adults use the Internet on a typical day. 
Search engine use is next in line and continues to increase in popularity. In fact, 
survey findings indicate that nearly 60 million American adults use search engines 
on a given day. Even though there are many Internet search engines, Google, Ya-
hoo!, and MSN receive over 81% of all search requests. Despite claims that the 
quality of search provided by Yahoo! and MSN now equals that of Google, 
Google continues to thrive as the search engine of choice, receiving over 46% of 
all search requests, nearly double the volume of Yahoo! and over four times that 
of MSN [7]. 
 
     To gain a better understanding of the upcoming propositions, it is better off to 
provide some fundamental definitions. 
 
 
Definitition 1.1. Suppose that ݇ א ܼା. A vector ݒ ൌ ሺݒଵ, ,ଶݒ ڮ , ௡ሻ்ݒ א   ܴ௡ is 
said to be k-convex if Δ௞ݒ௜ ൒ 0 for all ݅ א  ሼ1,2, ڮ , ݊ െ ݇ሽ, where  
 
 

Δ௞ݒ௜ ൌ ∑ ቀ௞
௝ቁ௞

௝ୀ଴ ሺെ1ሻ௞ି௝ݒ௜ା௝. 
      
 
      So it is crystal clear that a vector is 0 െconvex if and only if it is nonnegative 
and a vector is 1 െconvex if and only if it is monotonically increasing. A matrix ܣ 
is said to be ݇ െ ݇ if for any ݃݊݅ݒݎ݁ݏ݁ݎ݌ ݕݐ݅ݔ݁ݒ݊݋ܿ െconvex vector ݒ, the vec-
tor ݒܣ is also ݇ െconvex. According to this definition, ܣ is 0 െconvexity preserv-
ing iff it transforms nonnegative vectors into nonnegative vectors and a matrix ܣ 
is 1 െconvexity preserving iff it is monotonically preserving. 
      
As a result, it would be obvious that ݒ is ݇ െconcave when – ݇ is ݒ െconvex.  
 
Lemma 1.1. If we denote the lower triangular matrix as follow 
 

ܧ ؔ  ቌ
1
ڭ
ڭ
1

0
ڰ

…

…
ڰ
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ڰ
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ڭ
0
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then  
 

ଵିܧ ൌ

ۉ

ۈ
ۇ

1 0 … … 0
െ1 1 ڭ
0
ڭ
0

െ1
ڰ
…

1 ڰ
ڰ ڰ 0

0 െ1 ی1

ۋ
ۊ

.  

 
     By Lemma 1.1 for each ݆ א ሼ1, ڮ , ݊ሽ, the following result could be concluded, 
let ܧ௝ be the following ݊ ൈ ݊ matrix: ܧଵ ؔ ݆ and for ܧ ൒ 2,  
 

:௝ܧ ൌ  ቌ
௝ିଵܫ | 0
— —
0 ܧ |

ቍ,         ܧ௝
ିଵ ൌ  ቌ

௝ିଵܫ | 0
— —
0 ଵିܧ |

ቍ, 

 
where ܫ௝ିଵ is the ሺ݆ െ 1ሻ ൈ ሺ݆ െ 1ሻ െidentity matrix and ܧ is the ሺ݊ െ ݆ ൅ 1ሻ ൈ
ሺ݊ െ ݆ ൅ 1ሻ െmatrix given by above-mentioned lemma. 
     The following result corresponds to Corollary 4.4 of [1] and shows an impor-
tant property of ݎ–convexity preserving matrices for ݎ ൌ 0,1, ڮ , ݇ ሺ݇ ൒ 1ሻ.  
 
Proposition 1.1. Let ܣ be a ݎ െconvexity preserving matrix for 
ݎ ൌ 0,1, … , ݇ ሺ݇ ൒ 1ሻ. Then  
 

ሺܧଵ … ଵܧሺܣ௞ሻିଵܧ … ௞ሻܧ ൌ ൭
Λ௞ כ |
— —
0 ௞ܣ |

൱, 

 
where Λ௞ is an upper triangular matrix whose diagonal elements ߣଵ ൒ ଶߣ ൒ ڮ ൒
௞ሺ൒ߣ 0ሻ are the largest eigenvalues of ܣ, and ܣ௞ is a nonnegative matrix with 
௞ሻܣሺߩ ൑  .௞ߣ
     Observe that, by the previous result, the first ݇ columns of ܧଵ … -௞ form a baܧ
sis of the invariant subspace corresponding to the ݇ dominant eigenvalues of a 
matrix ܣ which is ݎ െconvexity preserving for ݎ ൌ 0,1, ڮ , ݇ ሺ݇ ൒ 0ሻ. 
     Before presenting the main propositions, it is necessary that mention the fol-
lowing note about the combinatorial numbers. 
     By induction, it is easy to see that for all ݉ ൒ 0, 
 

෍ ൬
݇ ൅ ݆

݇ ൰
௠

௝ୀ଴

ൌ ൬
݇ ൅ 1 ൅ ݉

݇ ൅ 1 ൰. 

 
     Given a square matrix A of order ݊ the following results provide, explicit ex-
pressions for the columns of ܤ௞ ؔ ଵܧܣ …  ௞ and the rows ofܧ
ሺܧଵ ڮ ଵܧሺܣ௞ሻିଵܧ ڮ  .௞ܤ and of the rows of ܣ ௞ሻ in terms of theܧ
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     Another main definition which is important in the rest of the paper is the 
definition of Google matrix. The Google matrix is a positive matrix obtained by a 
special rank-one perturbation of a stochastic matrix which represents the 
hyperlink structure of the webpages. More technically, if ݁ ൌ ሺ1,1, ڮ ,1ሻ் and ݒ is 
the probability vector, then the Google matrix is defined as follows: 
 
 

ሻߙሺܩ ൌ ܵߙ ൅ ሺ1 െ  ,்ݒሻ݁ߙ
 
 
where ߙ, i.e., the damping factor, is in the real open interval ሺ0,1ሻ, ܵ is a stochas-
tic matrix  
     The ݊ െdimensional probability vector ݒ, also called personalization or sto-
chastic vector, is a positive vector which its 1 െnorm is equal to 1. That is, 
ԡݒԡଵ ൌ 1. Consequently ݒ is a personalization vector when it satisfies in the fol-
lowing relation: 
 
 

ଵݒ ൅ ଶݒ ൅ ڮ ൅ ௡ݒ ൌ ௜ݒ   ݅׊            ,1 ൒ 0. 
 
 
 
2   Main Result 
 
Proposition 2.1. Let ܣ be an square matrix of order ݊ with columns ܣଵ, ڮ ,  ,௡ܣ
݇ ൏ ݊ and ܤ௥ ؔ ଵܧܣ ڮ ݎ ௥ forܧ ൌ 1, ڮ , ݇. Let us denote by ܤ௥

ଵ, ௥ܤ
ଶ, ڮ , ௥ܤ

௡ the 
columns of ܤ௥. Then, for each ݆ א ሼ1, ڮ , ݎ െ 1ሽ,  
 

௥ܤ
௝ ൌ ෍ ൬ ݅

݆ െ 1൰ ௜ܣ
௡

௜ୀ௝

,                                                                     ሺ1ሻ 

 
and, for each ݆ א ሼݎ, ڮ , ݊ሽ, 
 

௥ܤ
௝ ൌ ෍ ൬

ݎ െ 1 ൅ ݅ െ ݆
ݎ െ 1 ൰

௡

௜ୀ௝

 ௜.                                                       ሺ2ሻܣ

 
 
Proof. The simplest way to prove these formulas is the use of induction on 
ݎ א ሼ1, ڮ , ݇ሽ. For ݎ ൌ 1 we have by the definition of ܧଵ that  
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ଵܤ ൌ ଵܧܣ ൌ ሺܣଵ, ,ଶܣ ڮ , ଵܧ௡ሻܣ ൌ ൭෍ ௜ܣ
௡

௜ୀଵ

, ෍ ௜ܣ
௡

௜ୀଶ

, ڮ , ෍ ௜ܣ
௡

௜ୀ௡

൱. 

 
     Then ܤଵ

௝ ൌ ∑ ௜௡ܣ
௜ୀ௝  for all ݆ א ሼ1, … , ݊ሽ and therefore formulas (1) and (2) hold 

for ݎ ൌ 1. Let us suppose that (1) and (2) hold for ݎ א ሼ1, … , ݇ െ 1ሽ and let us 
prove them for ݎ ൅ 1. We can write 
 

௥ାଵܤ ൌ ଵܧܣ ڮ ௥ାଵܧ ൌ ሺܧܣଵ ڮ  .௥ାଵܧ௥ሻܧ
 
      Next by the induction hypothesis we have  
 

௥ାଵܤ ൌ ሺܤ௥
ଵ, ௥ܤ

ଶ, ڮ , ௥ܤ
௡ሻܧ௥ାଵ, 

 
where ܤ௥

௝ are given by (1) for ݆ א ሼ1, ڮ , ݎ െ 1ሽ and by (2) for ݆ א ሼݎ, ڮ , ݊ሽ. By 
the definition of ܧ௥ାଵ and the induction hypothesis we have that 
 

௥ାଵܤ
௝ ൌ ௥ܤ

௝ ൌ ෍ ൬
݅

݆ െ 1൰
௡

௜ୀ௝

 ,௜ܣ

 
for ݆ א ሼ1, ڮ , ݆ ሽ. Therefore (1) holds forݎ א ሼ1, ڮ , -ሽ. Analogously, by the defiݎ
nition of ܧ௥ାଵand the induction hypothesis we deduce  
 

௥ାଵܤ
௝ ൌ ෍ ௥ܤ

௝
௡

௜ୀ௝

ൌ ෍ ෍ ൬
ݎ െ 1 ൅ ݉ െ ݅

ݎ െ 1 ൰ ,௠ܣ
௡

௠ୀ௜

௡

௜ୀ௝

 

 
for ݆ א ሼݎ ൅ 1, ڮ , ݊ሽ. Reordering the terms (See for more [3]) in the previous 
formula it can be written as 
 

௥ାଵܤ
௝ ൌ ෍ ቎෍ ൬

ݎ െ 1 ൅ ݅ െ ݆
ݎ െ 1 ൰

௠

௜ୀ௝

቏ ௠ܣ
௡

௠ୀ௝

, 

 
     Changing the index of the inner sum in the previous formula we have that 
 

௥ାଵܤ
௝ ൌ ෍ ቎ ෍ ൬

ݎ െ 1 ൅ ݅
ݎ െ 1 ൰

௠ି௝

௜ୀ଴

቏ ௠ܣ
௡

௠ୀ௝

, 

 
finally, applying the presented note, we deduce 
 
 



 
 

910                                                                                                        F. Soleymani 
 
 
 

௥ାଵܤ
௝ ൌ ෍ ൬

ݎ ൅ ݉ െ ݆
ݎ ൰

௡

௠ୀ௝

 .௠ܣ

 
Hence formula (2) also holds for ݆ א ሼݎ ൅ 1, ڮ , ݊ሽ and the induction follows.     ז 
 
Proposition 2.2. Let ݇ ൏ ݊, ଴ܰ ؔ  ,௞ be the matrix defined in Proposition 2.1ܤ
with rows ܤ௞,ଵ, ڮ , ௞,௡, and let ௥ܰܤ ؔ ሺܧଵ ڮ ݎ ௞ forܤ௥ሻିଵܧ א ሼ1, ڮ , ݇ሽ. Let us 
denote by ௥ܰ,ଵ, ڮ , ௥ܰ,௡ the rows of ௥ܰ. Then, for each ݅ א ሼ1, ڮ ,  ,ሽݎ
 

௥ܰ,௜ ൌ ௞,௜ܤ௜ିଵ׏ ൌ ෍ሺെ1ሻ௝
௜ିଵ

௝ୀ଴

൬
݅ െ 1

݆ ൰  ௞,௜ି௝ ,                                    ሺ3ሻܤ

 
and, for each ݅ א ሼݎ ൅ 1, … , ݊ሽ, 
 

௥ܰ,௜ ൌ ௞,௜ܤ௥׏ ൌ ෍ሺെ1ሻ௝ ൬
ݎ
݆൰ ௞,௜ି௝ܤ

௥

௝ୀ଴

,                                              ሺ4ሻ 

 
where ׏ is the usual backward difference ׏ ௜݂ ؔ ௜݂ െ ௜݂ିଵ. 
 
 
Proof. Performing ܧ௦

ିଵ
௦ܰିଵ for all ݏ א ሼ1, … , ݇ሽ consists of subtracting from the 

rows ݏ ൅ 1, … , ݇ of ௦ܰିଵ the rows ݏ, … , ݇ െ 1 of ௦ܰିଵ, respectively. Therefore, 
we have that, for each ݅ א ሼ1, … , ሽ, ௥ܰ,௜ݎ ൌ ݅ ௞,௜, and that, for eachܤ௜ିଵ׏ א
ሼݎ ൅ 1, … , ݊ሽ, ௥ܰ,௜ ൌ  ௞,௜. Finally, the combinatorial formulas in (3) and (4) areܤ௥׏
well-known formulas for the backward difference ׏. 
    From the last two propositions we derive the following results. 
 
 
Corollary 2.1. Let ݇ be a positive integer less than ݊, let ܣ be an ݎ െconvexity 
preserving matrix for ݎ ൌ 0,1, … , ݇ ሺ݇ ൒ 1ሻ and let  be the matrix defined in 
proposition 2.2. Then ݉ଵଵ, ݉ଶଶ, ڮ , ݉௞௞ are the largest eigenvalues of ܣ satisfy-
ing ݉ଵଵ ൒ ݉ଶଶ ൒ ڮ ൒ ݉௞௞ ൒ 0, and the remaining ݊ െ ݇ eigenvalues of ܣ are 
the ݊ െ ݇ eigenvalue of the nonnegative matrix ൫݉௜௝൯

௞ାଵஸ௜,௝ஸ௡
. 

     Google likely will remain the top search engine. But what set Google apart 
from its competitors in the first place? The answer is PageRank. So it is interest-
ing to improve and discuss about the existed methods and try to improve them. 
The gist of this work is provided in the following corollary. 
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Corollary 2.2. If the Google matrix be an r-convexity preserving matrix then the 
above algorithm can be applied to find the eigenvalues of this matrix. 
 
 
3   Concluding remarks and discussion 
 
     By Corollary 2.1, the explicit formulas of proposition 2.1 and 2.2 allow us to 
calculate the ݇ largest eigenvalues of a matrix ݎ ܣ െconvexity preserving for 
ݎ ൌ 0,1, ڮ , ݇. If ܣ is an r-convexity preserving matrix for ݎ ൌ 0,1, ڮ , ݊ െ 1, then 
by the previous corollary, all its eigenvalues only depend on the entries of the 
upper triangular part of ܣ. These formulas include two phases: the first phase cor-
responds to the calculation of entries above and to right of the first diagonal en-
tries of ܤ௞ ൌ ଵܧሺܣ ڮ -௞ሻ (phase 1) and the second one corresponds to the calculaܧ
tion of the first diagonal entries of ௞ܰ ൌ ሺܧଵ ڮ   .௞ (phase 2)ܤ௞ሻିଵܧ
     We know that PageRank has connections to numerous areas of mathematics 
and computer science such as matrix theory, numerical analysis, information re-
trieval, and graph theory. As a result, much research continues to be devoted to 
explaining and improving PageRank. Here, by Corollary 2.2, it will be easy to 
find the ݊ eigenvalue of Googe matrix.  
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