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Abstract

Hamiltonian mechanics is the root of classical mechanics. Hamiltonian function is the
modified version of Lagrangian function which is of the first order differential
equations with generalized coordinates, generalized momentum and time. So,
Hamiltonian formulations play an important role in classical mechanics as well as in
mechanical systems. In this study, we have established Hamiltonian formalism for
dissipative system. We have demonstrated that, whether the class of dissipative
mechanical system has an analytical solution or not, it can be represented as a
Hamiltonian formalism. Dissipative system deals with the Damping force,
Mechanical energy, Principle of least action, First integral, Jacobian matrix and the
Non-conservative system deals with Fractional derivatives, Hamiltonian systems,
non-conservative systems and Laplace transform.
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Introduction

Hamiltonian mechanics, first introduced by William Rowan Hamilton in 1833, is one
of the most essential tools of classical mechanics [1]. It is treated as the reformulation
of classical mechanics which is developed form of Lagrangian mechanics in classical
mechanics. It is observed that the Lagrangian and the Hamiltonian formulations can
be constructed for different kinds of Dissipative and Non-conservative systems [2].
Hamilton originated Hamilton equations of motion and Hamiltonian formulation. In
1960s, Hori and Brouwer utilized the classical Hamiltonian formalism and a
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Perturbation theory to solve non-conservative problem [6]. They did not attempt to
derive the Hamiltonian formalism of non-conservative problem [9]. In 1990s Tveter
made such an attempt and, obtained a so-called general Hamilton equation:
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where {Q,P} are canonical variable and r is the position vector depends on the
canonical variable set {Q,P} and t i.e., r{Q, P,t}. K is the transformed Hamiltonian;

the subscript in the partial derivative expressions indicates the functional dependency
of K and r. If the variable set {Q, P} is transformed to the variable set {q, p}, where
the position vector r depends on g and does not depend explicitly on t, i.e., r (q)
Equation (1) can be reduces to
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Where F(ﬂJ denotes generalized force in direction i, H is the Hamiltonian. Yet
q

both equation (1) and equation (2) are not Hamiltonian formalisms, because there is
not a conservative Hamiltonian quantity (first integral). The resulting Hamiltonian is
un-physical: it is unbounded from below and under time reversal the oscillator is
transformed into its “mirrorimage”. By this arbitrary trick dissipative systems can be
handled as though they were conservative. Vujanovic, B.D. investigated dissipative
systems from the vision of variational methods. Tarasov suggested a generalization of
canonical quantization that maps a dynamical operator to a dynamical superoperator.
Tarasov claimed that this approach allows defining consistent quantization procedure
for non-Hamiltonian and dissipative systems. Kiehn considered that dissipation
effects may be included by considering the dissipative systems for which the closed
integral of action is a parameterdependent, conformal invariant of the motion [5]. He
applied this idea to hydrodynamics. S.G. Rajeev considered that a large class of
dissipative systems can be brought to a canonical form by introducing complex
coordinates in phase space and a complex valued Hamiltonian [10]. In this study, the
energy drained from the dissipative system is considered. In general an example of a
damped oscillator was given to demonstrate their approach.

Derivation Hamiltonian Formalism for Dissipative System

Generally we consider Fis a damping force which depends on the generalized
coordinates where variable q;,q,,...c.ccceeen.. g, coordinate and G, 0, ,.eceereeenene q,is
generalized velocity [11].

Again we consider F; is the components of the generalized force
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Where r is the position vector which depends on the g andq.
From the non conservative system the general form of Hamiltonian equation is,
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Where {Q,P} are canonical variable and r is the position vector depends on the
canonical variable set {Q,P} and t i.e., r{Q,P,t} and K is the transformed

Hamiltonian. The subscript in the partial derivative expression indicates the k and r
are dependency. If the variable set {Q, P} is transformed to the variable set {q, p}

where the position vector r depends on the g does not depends on t. Then the equation
(4) becomes,
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From equation (5) by the help of (3) we get,
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Let the new Hamiltonian quantity H and we do not change the definition of
canonical momenta, hence the Hamiltonian equation becomes

) oH . (oH
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Comparing the equations (6) and (7), we have
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In classical mechanics the Hamiltonian H is mechanical energy.
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Where y denotes the phase flow presented by the equation (6) and c is the constant
which depends on the initial condition.

Now find the H through line integral along the phase flow curve y using by
equation (6).
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In equation (9), only use Hamiltonian H replace by the new Hamiltonian H we get,
H :I a_H dqi +J a_H dpi+c (11)
2\ 00 aa;
ap 4 ap
Substituting the value of equations (10) and (11) in equation (9), we have
- oH oH
H = — | =F(g9,,0,,.e.... S s PR J,)dg; + || — | dp, +c
![8% lp LT N q )] q !(aqilp p
:H—jFi(ql,qz, .......... T PO PO 4, da,
e
~H=H —J'Fidqi (12)
e

The equation (7) is known as phase flow curve. Thus according to the Newton-
Laplace principle of determinacy we can assumegq;, = g (t), d, = g, (t)

Hence we can reasonable assume F, as

SICRUCH)A(Chy) S A (t(a ). 4, (t(a,)). 6, (t(t )., (8, )))

i.e., F,(q,) is a function of g, alone, thus we have

]
IFidqi :IFidqi :Wi(qi) (13)
V4 0
Now substituting the equation (13) into the equation (12), we obtain
H=H _Wi(qi) (14)

where —Z" w;(g,) denotes the negative work done by the damping force F. Then

=1
we must show that the Hamiltonian presented by the equation (14) satisfies the
equation (8). In other words, the equation (7) is equivalent to a Newtonian motion
equation. Substituting the equation (14) into the equation (7), we get

oH oH owla;) od oH  ow(a;)
oq, o9, o, op, op, b,
Where g, and p, are considered as distinct variable in Hamiltonian mechanics and
we consider g, and p, as dependent variable in the process of construction of H.

(15)
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Again J( J)_ 0 _ Ja[ql]g _ o, F.-0=0
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Substituting the equation (16) into the equation (15), we get

oH _oH S oH _oH
oq, oo, op,  op
The equatlons (17) and (8) are identical. Here we can consider that the Hamiltonian
quantity H satisfy the Hamilton’s equation (8). So the Hamiltonian quantity H in
equation (14) is represented as H=H - _[F.dr

(17)

Proof of the first integral

According to the law of conservation of energy described by the expanded
Hamiltonian quantity is an invariant of the phase flow. The proof is as follows:

In classical mechanics the Hamiltonian H is mechanical energy

~ ¢ oH oH

H=||—dg, + || — @dp, +C 18
(an q I(am] J (18)

Where ¢ is a constant, which depends on the initial condition. The equation (18)
derivative of tis

dH oH oH oH
=t Pt
d ot op, aq

0 (19)

According to the Newton-Laplace determinacy we get, H=H- W, (qi) (20)
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A

Suppose that H is a function of pand q alone, therefore dd—:':o

So the equation (18) becomes

dd  oH oH
an_oa o on, 21
it o P, 2 q; (21)

In the Hamiltonian general equation the canonical set {Q, P} is transformed to the
new set {q, p}and F is generalized force then

. oH .. .
piz_(a—qi]+Fi(ql,q2, .............. TV TR d,)
oH oH
P, =-| — |[+F(q,q,) and g, =| — 22
b, (6qij (a,.6;) and g (a J (22)

Suppose the new Hamiltonian H and we do not change the definition of the
canonical momenta so we can write the new Hamiltonian equation

oH oH
. = =] — , H = - — 23
Comparing the equations (22) and (23), we get

oH oH w i
a_qi:a_l:i(ql:qz' """""""" ROTAREAS PERERRRRE q“)

(oA [
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Substituting the equations (22) and (24) into the equation (21), we obtain

dHd  oH oH oH( oH oH (oH
—_—=—0D0. ] =—| —— F .". ———F .". :O
& o P o 8pi( o O q.)j+a|0i (éqi (@ q.)j

Thus the expanded Hamiltonian H is time independent.
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The discussion about generalized momentum and mechanical
momentum

The generalized momentum associated with the coordinate q shall be defined as
oL
p= P (25)
In general the generalized momentum p is identical with the usual mechanical
momentum. In derivation we see H differs fromH , corresponding L differs from
original L. According to the equation (25), the generalized momentum p shall vary
corresponding. But in derivation about p does not vary correspondingly. We can
explain the phenomenon from a derivation with another approach. In this part we

denote the new Hamiltonian with H and denote the new Lagrangian with L.

In an extra damping force F is added to the system one needs to solve the
Lagrangian equation

0. L oL
L (26)
dt\ oq; aq;

Where the subscript indicates the functional dependence in the partial derivative
operation. If we include the effects of the force in the Lagrangian, we may write

L=L+S 27)
Where S is the contribution to the Lagrangian from F . In this case, we would have

0L ) gL B 04
d il g _o=d A (L+S)p-—2(L+S)=0
dt 8q| aq| d aq| aql

.d aq?L L4 aqﬁs 0wl %S 8)
dtl oq, ) dtl oq, ) og, oq,

Subtracting the equation (26) from the equation (28), we get

i 0gqS _quSZquL_i Oyl :i 0gqS _ﬁquZ_(_F)
dt| aq, oq, oq, dt{ aq, dt{ aq, aq, '

0SS ) 0gyS
i[ qq ]_ Q9 =F (29)

Cdtl ag, ) ag,

The Hamiltonian is defined as
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H(a, p.t)= pd - L(a.4.t) (30)

Where p is the canonical momentum and is defined as p; = 2—" (31)

If the damping force F was not presented, we would have

H(L p.t)= p,g; — L(g,G.t) (32)
Where the momentum is defined as equation (25). By using equation (27) and
comparing the equations (30) and (32), we obtain

pid; — E(q,q,t)= Pid; — L(q’ p,t)2 p;d; _(L+S)(q’Q:t)= P:g;i — L(q’ p,t)
= P,q; - L(q,q,t)—S(q,q,t)= P:d; — L(Q: p’t) = PG, —S=p;G = P4 = PG +S
— 0..S
S P =D + (33)
oq;
Again using equations (30) and (32), we get

~0 e . . 0ggS ).
H(qiqvt): piqi +( - qu - I—(qu,t): piqi - L(qvqlt)_s +(%]q|

oq;
3 aqu :
~H(a, pt)=H(a, p.t)+ o S (34)
The contribution to Hamiltonian form the damping force F is given by,
q 8qu :
H-H=| ==l -5 (35)

If we take a time derivative of AH and integrating we have,

Gon- I(M}“ _ Iq.(_ LEJ ' i(%j}jt Help of (29)

dt ' og, ) dt{ aq

= _J. F.da; (36)
We observe that the increment in the value of increment AH from the damping force
F is equal to the negative work done by the force on the system.
Accordingly AH can be represented as function of g, without loss of generality. We

can consider S as a function independent ofq .

So the equation (35) becomes, AH =S (37)
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Again we know from (27), L=L+S=L+AH [ help of (37)] (38)
Now we can derive equation (33), we get

8¢S
-p, 39
3, Py (39)

We see in this part the generalized momentum p is equivalent to mechanical
momentum.

ﬁizpi+

The relation between the two Hamiltonian systems:

If we consider a new Hamiltonian system from above part,

< oH +  oH

e @y

Where g, =q;. Again we convert the damping force in to a function of g alone.
If we transformation a set {J;,d; } in to aset{p,,q, }. So the equation (25) becomes

CA

This transformation can not affect the value of the Hamiltonian.

Again we know if p, and p, are generalized momentum and mechanical

0.S
momentum, then we can write p, = p, — aq‘? (42)
;
Let M be the Jacobian matrix of the transformation then,
% % 1 0 I, O,
M=| S P 0,8 = 048 (43)
P 9P 69,09 . o064 :
oq, o, . A

Where |, is an identity matrix and O, is a null matrix.
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Suppose, J = O 1y (44)
PP A In On
Substituting (43) in the equationM " JM , we get M T JM = J (45)

where the subscript “T” denotes transpose matrix. Thus the transformation is
unitary canonical.

It can be shown by another way that the value of the new Hamiltonian is not affected
by the proposed transformation,

Let, ¢={p,,q,}' and Z ={p,,q,}'

dg ~ dz ~

Then we have, T JH, and T JH,
d—g=a—gd—z+a—g=MJﬁ;+a—g=MJﬁ;+a—g (46)
dt dz ot ot ot ot
According to the equation (42) we know that S does not dependent explicitly on t,
Thus % _ 0. Then we have, % _ MJIH (47)
ot ot

a7 7 ¢ " (G ¥ TOT

Because, H; =| H, = ~(AMm) =mTA? (48)

Again according to the equation (45), we haveM "JM = J , thus equation (47) can be
represented as % = JHT (49)
Comparing equations (47) and (49) help of (48), we obtain

MIH] =JH] = MH] =H! =H=H

Hence the transformation does not affect the value of the Hamiltonian.

Conclusion

Finally we may conclude that Hamiltonian formulation or mechanics is a developing
form of Lagrangian mechanical system. Above all, we believe that this study will
play pioneer role in exploring further study in the field of Mathematical Physics. This
study deals with the discussion of Hamiltonian formulation for Dissipative
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mechanical system. The first integral in general is not analytically integrable, with the
exception of the original mechanical system, which are integrable. The reason is that
the work done by damping force depends on the phase flow. If the system is
integrable, then the phase flow can be explicit written out, the system has an
analytical solution, and therefore the work done by damping force can be explicitly
integrated, consequently H can be explicitly represented. However, from the point of
view of physics, the expanded Hamilton quantity is still a first integral, namely total
energy. It can be concluded that whether the class of dissipative mechanical system
has an analytical solution or not, it can be represented as a Hamiltonian formalism.
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