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Abstract 
Hamiltonian mechanics is the root of classical mechanics. Hamiltonian function is the 
modified version of Lagrangian function which is of the first order differential 
equations with generalized coordinates, generalized momentum and time. So, 
Hamiltonian formulations play an important role in classical mechanics as well as in 
mechanical systems. In this study, we have established Hamiltonian formalism for 
dissipative system. We have demonstrated that, whether the class of dissipative 
mechanical system has an analytical solution or not, it can be represented as a 
Hamiltonian formalism. Dissipative system deals with the Damping force, 
Mechanical energy, Principle of least action, First integral, Jacobian matrix and the 
Non-conservative system deals with Fractional derivatives, Hamiltonian systems, 
non-conservative systems and Laplace transform.  
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Introduction 
 
Hamiltonian mechanics, first introduced by William Rowan Hamilton in 1833, is one 
of the most essential tools of classical mechanics [1]. It is treated as the reformulation 
of classical mechanics which is developed form of Lagrangian mechanics in classical 
mechanics. It is observed that the Lagrangian and the Hamiltonian formulations can 
be constructed for different kinds of Dissipative and Non-conservative systems [2]. 
Hamilton originated Hamilton equations of motion and Hamiltonian formulation. In 
1960s, Hori and Brouwer utilized the classical Hamiltonian formalism and a  
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Perturbation theory to solve non-conservative problem [6]. They did not attempt to 
derive the Hamiltonian formalism of non-conservative problem [9]. In 1990s Tveter 
made such an attempt and, obtained a so-called general Hamilton equation: 

QptiQpti
i Q

rF
Q
kP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=&  ,  
QptiQpti

i P
rF

P
kQ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=&                                    (1) 

where },{ PQ  are canonical variable and r is the position vector depends on the 
canonical variable set },{ PQ  and t  i.e., },,{ tPQr . K is the transformed Hamiltonian; 
the subscript in the partial derivative expressions indicates the functional dependency 
of K and r. If the variable set {Q, P} is transformed to the variable set {q, p}, where 
the position vector r depends on q and does not depend explicitly on t, i.e., r (q) 
Equation (1) can be reduces to 
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Where 
qiq

rF ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ denotes generalized force in direction i, H is the Hamiltonian. Yet 

both equation (1) and equation (2) are not Hamiltonian formalisms, because there is 
not a conservative Hamiltonian quantity (first integral). The resulting Hamiltonian is 
un-physical: it is unbounded from below and under time reversal the oscillator is 
transformed into its “mirrorimage”. By this arbitrary trick dissipative systems can be 
handled as though they were conservative. Vujanovic, B.D. investigated dissipative 
systems from the vision of variational methods. Tarasov suggested a generalization of 
canonical quantization that maps a dynamical operator to a dynamical superoperator. 
Tarasov claimed that this approach allows defining consistent quantization procedure 
for non-Hamiltonian and dissipative systems. Kiehn considered that dissipation 
effects may be included by considering the dissipative systems for which the closed 
integral of action is a parameterdependent, conformal invariant of the motion [5]. He 
applied this idea to hydrodynamics. S.G. Rajeev considered that a large class of 
dissipative systems can be brought to a canonical form by introducing complex 
coordinates in phase space and a complex valued Hamiltonian [10]. In this study, the 
energy drained from the dissipative system is considered. In general an example of a 
damped oscillator was given to demonstrate their approach. 
 
 
 

Derivation Hamiltonian Formalism for Dissipative System 
 
Generally we consider F is a damping force which depends on the generalized 
coordinates where variable nqqq ......,........., 21  coordinate and nqqq &&& ......,........., 21 is 
generalized velocity [11]. 
Again we consider iF  is the components of the generalized force  
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Where r is the position vector which depends on the q  and q& . 
From the non conservative system the general form of Hamiltonian equation is,  
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Where },{ PQ  are canonical variable and r is the position vector depends on the 
canonical variable set },{ PQ  and t i.e., },,{ tPQr  and K is the transformed 
Hamiltonian. The subscript in the partial derivative expression indicates the k and r 
are dependency. If the variable set },{ PQ  is transformed to the variable set },{ pq  
where the position vector r depends on the q does not depends on t. Then the equation 
(4) becomes, 
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From equation (5) by the help of (3) we get, 
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Let the new Hamiltonian quantity Ĥ  and we do not change the definition of 
canonical momenta, hence the Hamiltonian equation becomes 
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Comparing the equations (6) and (7), we have 
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In classical mechanics the Hamiltonian Ĥ  is mechanical energy. 
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Where γ  denotes the phase flow presented by the equation (6) and c is the constant 
which depends on the initial condition. 
Now find the Ĥ  through line integral along the phase flow curve γ  using by 
equation (6). 
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In equation (9), only use Hamiltonian H  replace by the new Hamiltonian Ĥ  we get, 
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Substituting the value of equations (10) and (11) in equation (9), we have 
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The equation (7) is known as phase flow curve. Thus according to the Newton-
Laplace principle of determinacy we can assume ( )tqq ii = ,  ( )tqq ii && =  
Hence we can reasonable assume iF  as 
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Now substituting the equation (13) into the equation (12), we obtain 
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 denotes the negative work done by the damping force F. Then 
we must show that the Hamiltonian presented by the equation (14) satisfies the 
equation (8). In other words, the equation (7) is equivalent to a Newtonian motion 
equation. Substituting the equation (14) into the equation (7), we get 
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Where iq  and ip  are considered as distinct variable in Hamiltonian mechanics and 
we consider iq  and ip  as dependent variable in the process of construction of H.  
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Substituting the equation (16) into the equation (15), we get 
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The equations (17) and (8) are identical. Here we can consider that the Hamiltonian 
quantity Ĥ  satisfy the Hamilton’s equation (8). So the Hamiltonian quantity Ĥ  in 
equation (14) is represented as ∫−=

γ

drFHH .ˆ  

 

Proof of the first integral 

According to the law of conservation of energy described by the expanded 
Hamiltonian quantity is an invariant of the phase flow. The proof is as follows: 

In classical mechanics the Hamiltonian Ĥ  is mechanical energy  
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Where c is a constant, which depends on the initial condition. The equation (18) 
derivative of  t is  
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According to the Newton-Laplace determinacy we get, ( )ii qwHH −=ˆ                 (20)                                 
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Suppose that Ĥ  is a function of p and q  alone, therefore 0
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=
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In the Hamiltonian general equation the canonical set },{ PQ  is transformed to the 
new set },{ pq and F is generalized force then 
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Comparing the equations (22) and (23), we get 
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Substituting the equations (22) and (24) into the equation (21), we obtain 
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Thus the expanded Hamiltonian Ĥ  is time independent. 
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The discussion about generalized momentum and mechanical 
momentum 

The generalized momentum associated with the coordinate q  shall be defined as          
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In general the generalized momentum p  is identical with the usual mechanical 
momentum. In derivation we see Ĥ  differs from H , corresponding L̂  differs from 
original L . According to the equation (25), the generalized momentum p  shall vary 
corresponding. But in derivation about p  does not vary correspondingly. We can 
explain the phenomenon from a derivation with another approach. In this part we 
denote the new Hamiltonian with H~  and denote the new Lagrangian with L~ . 

In an extra damping force F  is added to the system one needs to solve the 
Lagrangian equation  
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Where the subscript indicates the functional dependence in the partial derivative 
operation. If we include the effects of the force in the Lagrangian, we may write  
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Subtracting the equation (26) from the equation (28), we get 
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The Hamiltonian is defined as  
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The contribution to Hamiltonian form the damping force F  is given by, 
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If we take a time derivative of HΔ  and integrating we have, 
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We observe that the increment in the value of increment HΔ  from the damping force 
F  is equal to the negative work done by the force on the system.                          
Accordingly HΔ  can be represented as function of q , without loss of generality. We 
can consider S  as a function independent of q& . 

So the equation (35) becomes, SH =Δ                                                                    (37)     
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Again we know from (27), SLL +=~ HL Δ+=          [ help of (37)]                     (38)       

Now we can derive equation (33), we get 
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∂

∂
+=~

ip=                                                                                                   (39)     

We see in this part the generalized momentum p  is equivalent to mechanical 
momentum.       

 

The relation between the two Hamiltonian systems: 

If we consider a new Hamiltonian system from above part, 

i
i q

Hp ~
~

~
∂
∂

−=& ,
i

i p
Hq ~
~

~
∂
∂

−=&  (40)                                  

Where ii qq =~ . Again we convert the damping force in to a function of q  alone.             
If we transformation a set { }ii qp ~,~  in to a set{ }ii qp , . So the equation (25) becomes 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=
i

i q
Hp
ˆ

& , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=
i

i p
Hq
ˆ

&                                                                                        (41)                                  

This transformation can not affect the value of the Hamiltonian. 

Again we know if ip~  and  ip  are generalized momentum and mechanical 

momentum, then we can write 
i

qq
ii q

S
pp

&

&

∂

∂
−= ~                                                         (42) 

Let M be the Jacobian matrix of the transformation then, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

i

i

i

i

i

i

i

i

p
p

q
p

p
q

q
q

M

~~

~~

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂∂

∂
−= 1

01

ii

qq

qq
S
&

&

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂

∂
−=

n
ii

qq

nn

I
qq
S

OI

&

&                                             (43)                

 

Where nI  is an identity matrix and nO  is a null matrix. 
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Suppose, ⎥
⎦

⎤
⎢
⎣

⎡
−

=
nn

nn

OI
IO

J  (44)                                 

Substituting (43) in the equation JMM T , we get JJMM T =                                 (45)      

where the subscript  “T”  denotes  transpose  matrix. Thus the transformation is 
unitary canonical. 

It can be shown by another way that the value of the new Hamiltonian is not affected 
by the proposed transformation, 

Let,  { }T
ii qp ,=ς  and  { }T

ii qpZ ~,~=  

Then we have,  ξ
ς HJ

dt
d ˆ=    and  ZHJ

dt
dZ ~=  

tt
dZ

dZdt
d

∂
∂

+
∂

∂
=

ςςς
t

HMJ T
Z ∂

∂
+=

ς~
t

HMJ T
Z ∂

∂
+=

ς~                                                     (46)  

According to the equation (42) we know that S does not dependent explicitly on t,       

Thus  0=
∂
∂

t
ς . Then we have, T

ZHMJ
t

~=
∂
∂ς                                                              (47)                               

 Because,
T

T
Z Z

HH ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
ς

ξ
~~ ( )TMH ξ

~
= TT HM ς

~=  (48)                                 

Again according to the equation (45), we have JJMM T = , thus equation (47) can be 

represented as THJ
t ς
ς ~=
∂
∂                                                 (49)                                 

Comparing equations (47) and (49) help of (48), we obtain 

 TT
Z HJHMJ ς

~~ =    TT
Z HHM ς

~~ =⇒    HH ~ˆ =⇒  

Hence the transformation does not affect the value of the Hamiltonian. 

 

Conclusion 
 
Finally we may conclude that Hamiltonian formulation or mechanics is a developing 
form of Lagrangian mechanical system. Above all, we believe that this study will 
play pioneer role in exploring further study in the field of Mathematical Physics. This 
study deals with the discussion of Hamiltonian formulation for Dissipative  
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mechanical system. The first integral in general is not analytically integrable, with the 
exception of the original mechanical system, which are integrable. The reason is that 
the work done by damping force depends on the phase flow. If the system is 
integrable, then the phase flow can be explicit written out, the system has an 
analytical solution, and therefore the work done by damping force can be explicitly 
integrated, consequently H can be explicitly represented. However, from the point of 
view of physics, the expanded Hamilton quantity is still a first integral, namely total 
energy. It can be concluded that whether the class of dissipative mechanical system 
has an analytical solution or not, it can be represented as a Hamiltonian formalism.  
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