
Applied Mathematical Sciences, Vol. 4, 2010, no. 20, 959 - 966

The Linear Stability of Traveling Waves

to the Compound Kdv-Burgers Equation1

Xiaohua Liu

University of Shanghai for Science and Technology

Shanghai, P.R. China

lxhjkkl@yahoo.com.cn

Weiguo Zhang

University of Shanghai for Science and Technology

Shanghai, P.R. China

Abstract

Herein the traveling waves of compound Kdv-Burgers are considered,.with
the help of an analytic function D(λ), the traveling wave is stable.

Mathematics Subject Classification: 35Q20, 35Q40, 35Q35

Keywords: compound Kdv-Burgers equation; linear stability; oscillatory trav-

eling waves

1 Introduction

The compound Kdv-Burgers equation with diffusion terms

ut + auux + bu2ux + ruxx + βuxxx = 0 (1.1)

where nonlinearity coefficients a, b and dispersion coefficient β are positive con-

stants,diffusion coefficient r isn’t positive constant

when r = 0 equation (1) can be written the compound Kdv equation

ut + auux + bu2ux + βuxxx = 0 (1.2)
1Supported by Shanghai Leading Academic Discipline Project( S30501) and Shanghai Natural

Science Fund Project(10ZR1420800).
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when b = 0 equation (1) can be written the Kdv-Burgers equation

ut + auux + ruxx + βuxxx = 0 (1.3)

Many authors[1−3] have investigated the existence and stability of equation (1.2)

and (1.3),such as Zhang Weiguo[4]solve the four solitary solutions and six periodic

waves by hypothesis undetermined method.C. Jose[5]discussed numerically the sta-

bility of the shock solution of equation(1.3) for a = 2.L.Pego[6]studied the stability

of traveling wave solutions of a generalization of the Kdv-Burgers ut +upux +uxxx =

αuxx, as the parameters p and α are varied, by Evan’s function and numerical ex-

periment,and obtained that linear instability took place when: a) for fixed positive

wave velocity c and p > 4, α is made sufficiently small. b) for fixed positive α and

p > 4,wave velocity c is made sufficiently small. c) for fixed positive α and wave

velocity c,p is made sufficiently large.

2 Linear stability

In this section, we investigate the linear stability of oscillatory wave solution[7]

φ(ξ) which satisfies:

1) φ(ξ) →
{

0, ξ → +∞
u0, ξ → −∞ ,where u0 = −3+

√
9+48c

4

2) when r2 < 8βc
√

3+16c√
3+

√
3+16c

holds, φ(ξ) is monotonically decreasing and decay to

zero as ξ → +∞, while φ(ξ) → u0 in an oscillatory fashion as ξ → −∞
A natural one for our purposes is the space

BC(R, R) = {u : R → R|u is bounded and uniformly continuous}
supplied with supremum norm,see Henry[8]. There exists a solution of equation

(1.1) with the initial value u(x, 0) = u0(x) ∈ BC(R, R),see [9].If (1.1) is recast in

a moving coordinate frame,that is,in terms of variables ξ = x − ct and t,assuming

that a = b = 1, r < 0,it becomes

ut + uuξ + u2uξ + ruξξ + βuξξξ = cuξ (2.1)

To consider the stability,we use the linearized criterion. By substituting u(x, t) =

φ(x− ct) + v(x− ct, t) into equation (1.1),neglecting the terms which are O(v2),the

linear equation is

vt = Lv (2.2)

where L = −β∂3
ξ − r∂2

ξ + c∂ξ − ∂ξf
′(φ), f(φ) = φ2

2
+ φ3

3

The linearized criterion for stability of the traveling wave φ(ξ) is that the spec-

trum of L(expect for 0) lies in the left half plane.
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If λ is an eigenvalue of L with corresponding L2 function Y ,then Y is a solution

of the differential equation

λY = LY (2.3)

i.e.

λY = ∂ξ(−β∂2
ξ − r∂ξ + c − f ′(φ))Y = ∂ξLcY (2.4)

equals to equation
dy

dξ
= A(ξ, λ)y (2.5)

where y = (Y, Y ′, Y ′′)T , A(ξ, λ) =

⎛
⎜⎜⎝

0 1 0

0 0 1

− 1
β
(λ + ∂ξf

′(φ)) − 1
β
(c − f ′(φ)) − r

β

⎞
⎟⎟⎠

and we note asymptotical behavior matric A+ = limξ→+∞ A(ξ, λ), A− = limξ→−∞ A(ξ, λ).So

A+ =

⎛
⎜⎜⎝

0 1 0

0 0 1

−λ
β

− c
β

− r
β

⎞
⎟⎟⎠ , A− =

⎛
⎜⎜⎝

0 1 0

0 0 1

−λ
β

√
9+48c−3−16c

8β
− r

β

⎞
⎟⎟⎠

If μ is the eigenvalues of matric A±,then

h̄+(μ) = μ3 +
r

β
μ2 − c

β
μ +

λ

β
= 0 (2.6)

and

h̄−(μ) = μ3 +
r

β
μ2 −

√
9 + 48c − 3 − 16c

8β
μ +

λ

β
= 0 (2.7)

Obviously, if μ = iτ(τ ∈ R), then we find easily

S+
e = {λ : λ = rτ 2 + i(βτ 3 + cτ)}

S−
e = {λ : λ = rτ 2 + i(βτ 3 + τ(

√
9 + 48c − 3 − 16c

8
))}

Because r < 0 and S+
e ∪ S−

e determines the information of the essential spec-

tral(see Henry[8]), so we know the essential spectrum σe(L) of L lies entirely in the

left half plane and cause no problem for stability. We discuss mainly the isolate

spectrum σn(L) by defining a analytic function D(λ),which is Evan’s function[10]

clarifying the isolate spectrum.The complement of S+
e ∪ S−

e consists of a number

of disjoint connected components.Let Ω denote the component which contains the

right half plane.Then the essential spectrum can be characterized by the following

results which is proved in [6]
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Proposition 3 The essential spectrum of L contains S+
e ∪ S−

e , but contains no

point of the component Ω,in particular,points in the spectrum of lying in Ω,must be

isolated eigenvalues.

Ω does not consist entirely of eigenvalues,however,this does not influence the

discuss about stability because of the following proposition 6 and 7.

Assuming λ = 0,by (2.6) and (2.7) we compute the eigenvalues of A+ are

μ+
1 =

−r −√
r2 + 4βc

2β
, μ+

2 = 0, μ+
3 =

−r +
√

r2 + 4βc

2β
(2.8)

and the eigenvalues of A− are

μ−
1 = 0, μ−

2 =
−2r−

√
4r2+2β(

√
9+48c−3−16c)

4β
,

μ−
3 =

−2r+
√

4r2+2β(
√

9+48c−3−16c)

4β

(2.9)

Differentiating (2.6)in λ,when μ = 0,we observe dμ
dλ

= 1
c

> 0 and find μ > 0 holds

if λ > 0,

Differentiating (2.7)in λ,when μ = 0,we observe dμ
dλ

= 8√
9+48c−3−16c

< 0 and find

μ < 0 holds if λ > 0.

when r2 < 8βc
√

3+16c√
3+

√
3+16c

, so 4r2 + 2β(
√

9 + 48c− 3− 16c) < 0,therefore real part of

the eigenvalues μ−
2 and μ−

3 are positive.

Then A± exists unique negative real part eigenvalue,therefore

Proposition 4 there exists a > 0, such that Ω+ = {λ : Reλ ≥ −a} ⊂ Ω.

Now let us define Evan’s function D(λ). Firstly we need the following contents.

dz

dξ
= −zA(ξ, λ) (2.10)

is the adjoint system of (2.5),using the equation (1.31) of [11],it may be related to

the adjoint equation

λz = (−β∂2
ξ + r∂ξ + c − f ′(φ))∂ξz = Lc∂ξz

μ±
j (j = 1, 2, 3) denotes the eigenvalues A± and satisfies Reμ±

1 ≤ Reμ±
j , by the

proposition (1.2)of [11], there exists unique solution ζ+ of system (2.5)and unique

solution η− of system (2.10) which are analytic for λ ∈ Ω+, satisfy

ζ+ ∼ exp(μ+
1 ξ)v+ (as ξ → +∞), (2.11)

η− ∼ exp(−μ−
1 ξ)w− (as ξ → −∞) (2.12)
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where the notations

v+ = (1, μ+
1 , (μ+

1 )2)T , v− = (1, μ−
1 , (μ−

1 )2)T

and

w+ =
(μ+

1 (μ+
1 + r

β
) − c

β
, μ+

1 + r
β
, 1)

h̄′
+(μ+

1 )
, w− =

(μ−
1 (μ−

1 + r
β
) −

√
9+48c−3−16c

8β
, μ−

1 + r
β
, 1)

h̄′
−(μ−

1 )

satisfy

(A± − μ±
1 I)v± = 0, w±(A± − μ±

1 I) = 0, w+ · v+ = w− · v− = 1

by the proposition (1.4)of [11], we find

ζ+ ∼ (η− · ζ+)(λ)exp(μ−
1 ξ)v−(λ) (as ξ → −∞)

Secondly we may define Evan’s function D(λ) = (η− · ζ+)(ξ, λ). If D(λ) satisfies

the below propositions,we can investigate the stability of oscillatory wave solution

φ(ξ).

Proposition 5 Evan’s function D(λ) is independent of ξ and analytic for λ ∈ Ω+

Proof: because the solution ζ+, η− are analytic,so is D(λ); computing

∂D(λ)

∂ξ
=

∂η−

∂ξ
· ζ+ + η− · ∂ζ+

∂ξ
= −η−A(ξ, λ) · ζ+ + η− · A(ξ, λ)ζ+ = 0

so D(λ) is independent of ξ. Using theorem 1.9 by [11],we have

Proposition 6 If λ ∈ Ω+, λ is a eigenvalue of equation (2.3) if and only if D(λ) =

0.

To investigate stability , we must press for

Proposition 7 For λ ∈ Ω+, D(λ) satisfy i)D(0) = 0, ii)D(λ) �= 0, for Reλ >

0, and iii) dD(λ)
dλ

∣∣∣
λ=0

> 0.

proof: Differentiating (2.1) in ξ, we observe

βφ′′′ + rφ′′ − cφ′ + φφ′ + φ′φ2 = 0 (2.13)

comparing (2.13) with (2.4), and using the (1.34)of [11], we find D(0) = 0,i)holds.

Assuming that D(λ) = 0 when Reλ > 0, for λ ∈ Ω+, by the definition of D(λ),

we know there exists solution Y which decays to zero as |ξ| → −∞ together with

its derivatives. Integrating (2.4) yields

λ
∫ +∞

−∞
Y = 0
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so we can define

T (x) =
∫ x

−∞
Y (w)dw

obviously T → 0 as |ξ| → ∞ and the derivatives of T → 0 as |ξ| → ∞, substituting

T into (2.4), we observe T satisfies

λT = (−β∂2
ξ − r∂ξ + c − f ′(φ))∂ξT (2.14)

With the integration by parts and the asymptotic propositions of T ,computing

0 < Reλ
∫ +∞

−∞
T T̄dξ = Re

∫ +∞

−∞
(−β∂2

ξ − r∂ξ + c − f ′(φ))∂ξT T̄dξ

= r
∫ +∞

−∞
|T ′|2dξ +

1

2

∫ +∞

−∞
|T |2f ′′(φ)φ′dξ

because of the proposition of φ and f ′′(φ) = 1 + 2φ > 0, φ′ ≤ 0,we know the

right hand of the above inequality is negative,however the left hand is positive,This

contradiction establishes the results.Then ii) holds.

we compute dD(λ)
dλ

∣∣∣
λ=0

by using the (1.34) and (1.35)of [11], for λ = 0, Y + = ζ+
1

is unique solution of equation (2.5), that is

0 = ∂ξ(−β∂2
ξ − r∂ξ + c − f ′(φ))Y + (2.15)

and Z− = η−
m is unique solution of equation (2.10), that is

0 = (−β∂2
ξ + r∂ξ + c − f ′(φ))∂ξZ

− (2.16)

Y + satisfy Y +e−μ+
1 ξ → v1 (as ξ → +∞) and Z− satisfy Z−eμ−

1 ξ → wm (as ξ → −∞);

where v1wmh̄′
−(μ−

1 ) = 1.

By (2.7)-(2.9),we may choose v1 = 1, wm = 1
h̄−(0)

,in addition to (2.11)-(2.13) we

find (φ, φ′) → eμ+
1 ξ(1, μ+

1 ) as ξ → +∞; by the uniqueness of solution we may choose

Y + = (μ+
1 )−1φ′;very similarly, we find (φ, φ′) → (−

√
9+48c−3−16c

8β
, r
β
)

h̄−(0)
as ξ → −∞ and

choose Z− = (−
√

9+48c−3−16c
8β

)−1φ , in virtue of (1.35)of [11], we compute

dD(λ)

dλ

∣∣∣∣∣
λ=0

= (−
√

9 + 48c − 3 − 16c

8β
μ+

1 )−1
∫ +∞

−∞
φφ′dξ = (

√
9 + 48c − 3 − 16c

8β
)−1 u2

0

2(μ+
1 )

> 0

so iii) holds.the proof is little different from that given by Pego R.[11].Now we get

the main lemma.

Lemma 1 Let L be given by (2.2),L : BC → BC.Then

(1) σ(L) \ {0} lies entirely in the left half plane.
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(2) 0 is a simple eigenvalue.

Proof:by proposition 6 and 7,we know easily (2) holds; by proposition 3,4,6 and

7,we know easily (1) holds;

Therefore we have no difficulties to get the main results.

Theorem 1 If r2 < 8βc
√

3+16c√
3+

√
3+16c

, r < 0,the oscillatory wave φ(ξ) is linear stable.

The proof of this theorem is obvious by lemma 1.
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