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Abstract

Herein the traveling waves of compound Kdv-Burgers are considered,.with
the help of an analytic function D()\), the traveling wave is stable.
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1 Introduction

The compound Kdv-Burgers equation with diffusion terms
ug + auuy + butuy, + rugy + Buge, =0 (1.1)

where nonlinearity coefficients a, b and dispersion coefficient 3 are positive con-
stants,diffusion coefficient r isn’t positive constant
when 7 = 0 equation (1) can be written the compound Kdv equation

g + auuy + buPuy, + Puge, =0 (1.2)

ISupported by Shanghai Leading Academic Discipline Project( S30501) and Shanghai Natural
Science Fund Project(10ZR1420800).




960 Xiaohua Liu and Weiguo Zhang

when b = 0 equation (1) can be written the Kdv-Burgers equation

Uy + AUy + TUgy + Plgpe = 0 (1.3)

Many authors!'=3 have investigated the existence and stability of equation (1.2)
and (1.3),such as Zhang Weiguolsolve the four solitary solutions and six periodic
waves by hypothesis undetermined method.C. Josel’!discussed numerically the sta-
bility of the shock solution of equation(1.3) for a = 2.L.Pegol®lstudied the stability
of traveling wave solutions of a generalization of the Kdv-Burgers u; + uPu, + tppy =
Uy, as the parameters p and « are varied, by Evan’s function and numerical ex-
periment,and obtained that linear instability took place when: a) for fixed positive
wave velocity ¢ and p > 4, « is made sufficiently small. b) for fixed positive a and
p > 4,wave velocity c is made sufficiently small. ¢) for fixed positive a and wave
velocity ¢,p is made sufficiently large.

2 Linear stability

In this section, we investigate the linear stability of oscillatory wave solution!”
#(€) which satisfies:

1>¢<§>e{0’ § = oo

Ug, f_) -0

—3+v9+48¢c

,where 1y = 1

2) when r? < % holds, ¢(&) is monotonically decreasing and decay to
zero as & — 400, while ¢(£) — ug in an oscillatory fashion as £ — —oo
A natural one for our purposes is the space
BC(R,R) = {u: R — R|u is bounded and uniformly continuous}

supplied with supremum norm.see Henry!®!. There exists a solution of equation
(1.1) with the initial value u(z,0) = ug(z) € BC(R, R),see PLIf (1.1) is recast in
a moving coordinate frame,that is,in terms of variables & = x — ¢t and t,assuming
that a = b= 1,r < 0,it becomes

Uy + Ulg + u2u5 + TUge + ﬁU&g = ClUg¢ (2.1)

To consider the stability,we use the linearized criterion. By substituting u(z,t) =
é(x — ct) +v(x — ct,t) into equation (1.1),neglecting the terms which are O(v?),the
linear equation is

v = Lo (2.2)

where L = — 308 — 102 + cd — 0cf'(0), f(¢) = & + &
The linearized criterion for stability of the traveling wave ¢(&) is that the spec-
trum of L(expect for 0) lies in the left half plane.
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If X is an eigenvalue of L with corresponding L? function Y ,then Y is a solution
of the differential equation

AY =LY (2.3)
ie.
AY = 0c(—p0; — 10 + ¢ — ['(9))Y = O LY (2.4)
equals to equation
Y~ A (25)
df - ) y .
0 1 0
where y = (Y,Y YT, A& N) = 0 0 1

—5(A+0:f'(¢)) —5(c—f'() —5
(

0 1 0 0 1 0
AT = 0 0 1 , A" = 0 0 1
A _ ¢ _r A V/9448c—3—16c
B B B B 83 B
If 11 is the eigenvalues of matric A* then
r c A
hy(p) = p’ + BMQ — M + 5= 0 (2.6)

and

r V94 48c — 3 — 16¢ A
ho(p) = p® + —=p’ — +==0 2.7
() = p " 35 nt 3 (2.7)
Obviously, if 4 = i7(7 € R), then we find easily
St={N: A=rr? +i(B7° +c7)}
v/ 48c -3 —1
ST ={N:A=rr? +i(Br +7( o 808 5 60))}

Because r < 0 and S U S, determines the information of the essential spec-
tral(see Henryl®l), so we know the essential spectrum o,(L) of L lies entirely in the
left half plane and cause no problem for stability. We discuss mainly the isolate
spectrum o,(L) by defining a analytic function D(\),which is Evan’s function’!
clarifying the isolate spectrum.The complement of ST U S_ consists of a number
of disjoint connected components.Let 2 denote the component which contains the
right half plane. Then the essential spectrum can be characterized by the following
results which is proved in [©!
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Proposition 3  The essential spectrum of L contains S U S, but contains no
point of the component €),in particular,points in the spectrum of lying in {2, must be
isolated eigenvalues.

) does not consist entirely of eigenvalues,however,this does not influence the
discuss about stability because of the following proposition 6 and 7.

Assuming A = 0,by (2.6) and (2.7) we compute the eigenvalues of AT are

. —r—VPTFag . —r+ TR
1 3

= =0 = 2.8
K 23 y o Ho M 23 (2.8)
and the eigenvalues of A~ are
_ _ —2r—/4r2428(,/9+48c—3—16¢
pr =0, py = v iﬁ )7
(2.9)

_ —2r44/4r2425(/9+48¢c—3—16¢)
M3 = 48

Differentiating (2.6)in A\,when y = 0,we observe % =1 > 0 and find > 0 holds
if A >0,

Differentiating (2.7)in A,when p = 0,we observe % = m < 0 and find
1 < 0 holds if A > 0.

when r? < j’gii V\;’%, s0 4r% 4+ 23(1/9 + 48¢c — 3 — 16¢) < 0,therefore real part of
the eigenvalues p; and p3 are positive.

Then AT exists unique negative real part eigenvalue,therefore
Proposition 4 there exists a > 0, such that Q; = {\: ReA > —a} C Q.

Now let us define Evan’s function D()). Firstly we need the following contents.

dz
— = —zA(E, A 2.10
is the adjoint system of (2.5),using the equation (1.31) of [11],it may be related to

the adjoint equation
Az = (—fB0; +10: +c— ['(§))0ez = LcOez

,u;-—L(j — 1,2,3) denotes the eigenvalues A* and satisfies Repf < Reuji, by the
proposition (1.2)of [11], there exists unique solution (* of system (2.5)and unique
solution i~ of system (2.10) which are analytic for A\ € Q. satisfy

¢"~eap(pr§)vt (as £ — +00), (2.11)

n- ~exp(—p ws  (as € — —o0) (2.12)
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where the notations

vt = (1 ()7, oo = (1, (02"
and
L (e +5) = G + 501 (e () — RS g+ 5, 1)
w = T+ ) w = 7=
h+(M1) h (i)
satisfy

(A — pFIw* =0, w (AT — 1) =0, wh vt =w v =1
by the proposition (1.4)of [11], we find

¢~ (- CHWNeap(p o= (A) - (as § — —o0)

Secondly we may define Evan’s function D(A) = (= -(7)(&, A). If D()\) satisfies
the below propositions,we can investigate the stability of oscillatory wave solution

o(&).
Proposition 5 Evan’s function D()) is independent of £ and analytic for A €

Proof: because the solution (™, 7~ are analytic,so is D(\); computing

OD(A)  On~
o = ac

"
G G = S AN € AN =0
so D(A) is independent of £. Using theorem 1.9 by [11],we have
Proposition 6 If A € Q. \is a eigenvalue of equation (2.3) if and only if D(\) =
0.
To investigate stability , we must press for
Proposition 7 For A € Q,, D(\) satisfy i)D(0) =0, ii)D(X) #0, for ReA >
0, and in)d'il—g”}kzo > 0.

proof: Differentiating (2.1) in £, we observe

ﬂ¢//l+r¢//_c¢/+¢¢/+¢/¢2:O (213)

comparing (2.13) with (2.4), and using the (1.34)of [11], we find D(0) = 0,i)holds.

Assuming that D(A) = 0 when Re\ > 0, for A € Q. by the definition of D(\),
we know there exists solution Y which decays to zero as |{| — —oo together with
its derivatives. Integrating (2.4) yields

+oo
)\/ Y =0
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so we can define

obviously 7" — 0 as |{] — oo and the derivatives of T' — 0 as || — oo, substituting
T into (2.4), we observe T satisfies

= (—582 — 10 +c— f'(9))0:T (2.14)

With the integration by parts and the asymptotic propositions of T',computing

+oo +o0 —
0< Re)\/_ TTde = Re/ (—BO2 — 1O + ¢ — f/(¢))OTTde

_ too 2 1 oo 2 1 /
= [ pag s L [ o)
because of the proposition of ¢ and f”(¢) = 1 4 2¢ > 0,¢’ < 0,we know the

right hand of the above inequality is negative,however the left hand is positive, This
contradiction establishes the results.Then ii) holds.

we compute dgf\’\) ‘)\_ by using the (1.34) and (1.35)of [11], for A = 0, Y = ¢}

is unique solution of equation (2.5), that is

0=0(—PB; —rd: +c— f(o)Y" (2.15)
and Z~ =7, is unique solution of equation (2.10), that is
= (=B0; + 10 +c— ['(¢)0cZ~ (2.16)

Y satisfy YTe 1€ — vy (as € — +00) and Z~ satisfy Z~e1€ — w,, (as £ — —00);
where viw,,h' (uy) = 1.
By (2.7)-(2.9),we may choose v, = 1, w,, = n%(o)’in addition to (2.11)-(2.13) we

find (¢, ¢') — e &(1, uf) as € — +oo; by the uniqueness of solution we may choose
( V/9+48c—3—16¢ r)
YT = (uf)¢;very similarly, we find (¢, ¢') — hiﬂ(o) 25 as & — —oo and

choose Z~ = (—7V%488C[;3’W)_1¢ , in virtue of (1.35)of [11], we compute

dD(\) . V9+48c—3—16¢ ) d V9 +48¢c—3—16c,_; u 0
N = 84 / POl = 8 T

so iii) holds.the proof is little different from that given by Pego R.M Now we get
the main lemma.

Lemma 1 Let L be given by (2.2),L : BC' — BC.Then

(1) o(L) \ {0} lies entirely in the left half plane.
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(2) 0 is a simple eigenvalue.

Proof:by proposition 6 and 7,we know easily (2) holds; by proposition 3,4,6 and
7,we know easily (1) holds;

Therefore we have no difficulties to get the main results.
Theorem 1 If 2 < 88e/3516c . () the oscillatory wave ¢(&) is linear stable.

V3++/3+16¢’
The proof of this theorem is obvious by lemma 1.
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