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Abstract

In the present work a field is built on the set of permutations, using
the construction of a bijection, Im, which goes from the set Nm =
{n ∈ N |0 ≤ n ≤ m! − 1} to the set Πm = {π| π is a permutation of
array 0, 1, 2, . . . ,m−1}. During this work, it is shown that this bijection
defines an isomorphism Im : Nm −→ Πm; also, two binary operations
—⊕ and �— on the set Πm are defined, such that a field can be built
on a subset of Πm. On the other side, it is also possible to define a
unary operation on Πm whose result is the inverse of a permutation,
denoted as ¬π. Finally, an application of this tool to cryptography
is presented, specifically to symmetric cryptosystems DES and Triple
DES [1], with a modification: the inverse permutation at the end of the
ciphering process is not applied; only the initial permutation is applied,
but using a variable permutation. It can be seen that, as a result, both
cryptosystems are strengthened against brute-force attacks, as well as
against differential and linear cryptanalysis in the case of DES [2],[3].
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1 Development

Given two non-negative numbers n, m such that 0 ≤ n ≤ m! − 1 and using
Euclid’s Division algorithm [4], number n can be written in a unique manner
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as follows:

n = C0(m − 1)! + C1(m − 2)! + C2(m − 3)! + . . . + Cm−21! (1)

Notice that n ∈ Nm = {n ∈ N |0 ≤ n ≤ m! − 1} and (m−1)!, (m−2)!, . . . , 1!
are considered to be fixed.

Also, it is simple to prove that

0 ≤ Ci < (m − i), with 0 ≤ i ≤ (m − 2) (2)

Now, once the values of C0, C1, . . . , Cm−2 are computed, the following al-
gorithm can be built:

Step 0 An increasing array is defined in the following way: X[0] = 0, X[1] =
1, X[2] = 2, . . . , X[m − 1] = m − 1.

Step 1 Using expression 2 we have that C0 < m; then X[C0] is one of the
elements of the array from step 0. X[C0] is eliminated from that array
and a new array is started from X[0] to X[m − 2].

Step 2 Again, according to expression 2 we have that C1 < m−1; then X[C1]
is one of the elements of the array from step 1. In the same fashion as
in the former step, X[C1] is eliminated from the array from step 1 and a
new array is started from X[0] to X[m − 3].

Step m-1 If this is done repeatedly, at the end we will have the following
array: X[Cm−2] and X[0].

Finally, the result of the eliminated numbers X[C0], X[C1], . . . , X[Cm−2]
and X[0] is a permutation of array 0, 1, 2, . . . , m−1. Then, it can be said that
any n ∈ Nm can be associated to a permutation in m − 1 steps. At this point
a question arises: given two different numbers from the set Nm, will they have
associated two different permutations? The answer to this question is given
by the JV theorem, which is presented below. Notice that this theorem and
its proof were taken from [5], where a more ample discussion is given.

Theorem 1.1 (JV Theorem) Given the sets Nm = {n ∈ N |0 ≤ n ≤ m! − 1}
and Πm = {π |π is a permutation of array 0, 1, 2, . . . , m − 1}, the algorithm
described
above defines a bijection from the set Nm to the set Πm.

Proof.
The fact that function Im is one-to-one will be proved by reductio ad ab-

surdum.
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Let us assume that for n1 �= n2 with n1, n2 ∈ Nm =⇒ Im(n1) = Im(n2).
From expression 1 we know that n1, n2 can be written as:

n1 = C0,1(m − 1)! + C1,1(m − 2)! + C2,1(m − 3)! + . . . . + Cm−2,11! and

n2 = C0,2(m − 1)! + C1,2(m − 2)! + C2,2(m − 3)! + . . . . + Cm−2,21!

Now, Im(n1) = Im(n2) means that: C0,1 = C0,2, C1,1 = C1,2, . . . , Cm−2,1 =
Cm−2,2. Thus n1 = n2, which contradicts the initial hypothesis. Then, we can
conclude that if n1 �= n2 with n1, n2 ∈ Nm =⇒ Im(n1) �= Im(n2). The latter
proves that function Im is one-to-one.

The proof that Im is onto is quite simple, given that the number of elements
in both sets Nm and Πm are equal.

In order to build a field on the set Πm we need to define two operations, i.e.
addition and product. However, we need also to build the inverse function of
Im: (Im)−1. This means that for a given permutation Im(n), we need to give
the algorithm which calculates the value of n. The following algorithm does
exactly such an operation.

Step 0 Start with an ordered array; that is, 0, 1, 2, . . . , m − 1.

Step 1 Take the first element of permutation Im(n), say π1, and locate the
position of value π1 in the array 0, 1, 2, . . . , m − 1, counting from 0. Let
us denote this position as C0 and eliminate the value π1 from the array
obtained in step 0. The resulting array is denoted as A (C0). In fact, C0

is the coefficient of (m − 1)!; that is, C0 (m − 1)!.

Step 2 Take the second element of permutation Im(n), say π2, and locate the
position of value π2 in the array A (C0), counting from 0, denoted as
C1. Then eliminate said value from the array A (C0) resulting the array
A (C0, C1). The number C1 is the coefficient of (m − 2)!, and the two
first summands in expression 1 would be: C0 (m − 1)! + C1 (m − 2)!.

It is not difficult to reach the conclusion that after m − 1 steps, the value
of n which we are looking for has the following expression:

n = C0(m − 1)! + C1(m − 2)! + C2(m − 3)! + . . . + Cm−21!

2 Definition of the Operations ⊕ and �, and

Building the Field

Two algorithms were described in the former section. The first algorithm
defines a bijective function which goes from the set Nm on the natural numbers
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to the set Πm of permutations, while the second algorithm defines the inverse
function of the first one.

On the other hand, if we denote that functions as Im and (Im)−1, respec-
tively, then the operations ⊕ and � are defined as follows:

Definition 2.1 The addition of two elements π1, π2 ∈ Πm is expressed as:

π1 ⊕ π2 = Im(((Im)−1(π1) + (Im)−1(π2)) mod m!)

Definition 2.2 The product of two elements π1, π2 ∈ Πm is defined as:

π1 � π2 = Im(((Im)−1(π1) ∗ (Im)−1(π2)) mod m!)

Using the latter two operations, we shall see that function Im defines an
isomorphism [4], which goes from the set Nm to the set of permutations Πm.

Theorem 2.3 The function Im : Nm −→ Πm defines an isomorphism with
operations ⊕, �. This means that the following properties are true:

1. Im(a + b mod m!) = Im(a) ⊕ Im(b)

2. Im(a ∗ b mod m!) = Im(a) � Im(b) where a, b ∈ Nm

Proof.
Let us begin with item 1, that is, Im(a + b mod m!) = Im(a) ⊕ Im(b).

Im(a) ⊕ Im(b) = πa ⊕ πb

where πa, πb are the permutations associated to numbers a, b, respectively.
However, by definition 2.1 we have that

πa ⊕ πb = Im(((Im)−1(πa) + (Im)−1(πb)) mod m!)

It follows that

Im(((Im)−1(πa) + (Im)−1(πb)) mod m!) = Im(a + b mod m!)

which proves item 1.
For item 2 we will follow a similar strategy; that is, to begin from the

right-hand side of the expression:
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Im(a) � Im(b) = πa � πb

However, by definition 2.2 we have that

πa � πb = Im(((Im)−1(πa) ∗ (Im)−1(πb)) mod m!)

Finally, it is concluded that

Im(((Im)−1(πa) ∗ (Im)−1(πb)) mod m!) = Im(a ∗ b mod m!)

Now let us prove the following theorem.

Theorem 2.4 Starting from the two operations formerly defined, ⊕ and �,
it is possible to build a ring on the set Πm.

Proof.
The proof is very simple, given that a ring can be built on the Nm set

by using the properties of modular arithmetic, and the fact that Im is an
isomorphism with image in the set Πm.

Before addressing the problem of the multiplicative inverse, it is important
to notice that any element different to 0 from the set Nm —say a ∈ Nm— has
a multiplicative inverse mod m!, if and only if the maximum common divisor
of a and m! is 1 [6]. In this sense, if a subset Np

m ⊂ Nm is chosen such that
all elements different to 0 in the subset have multiplicative inverse, it follows
that a subset of prime size must be chosen: |Np

m| = p.
This prime number p holds to the condition 1 ≤ p ≤ m! − 1. Actually,

there are some particular cases where m! − 1 is prime, such as when m = 3
or m = 4. Then we proceed in the following manner: for a given positive
integer m, a prime number p is chosen such that 1 ≤ p ≤ m! − 1. Then, by
using function Im we can find the image of set Np

m = {0, 1, . . . , p − 1} which
is Πp

m = {Im (0) , Im (1) , . . . , Im (p − 1)}. Both operations ⊕ and � on Πp
m are

defined as stated in definitions 2.1 and 2.2, except that instead of using mod
m!, mod p is used.

Theorem 2.5 It is possible to build a field on set Πp
m by using operations

⊕ and �.
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Proof.
According to theorem 2.4, the set Πp

m forms a ring with operations ⊕ and
�. It only remains to be proved that for any permutation π ∈ Πp

m, and
π �= 0 = Ip (0). Then exists π−1 such that π � π−1 = π−1 � π = 1 = Im (1).
If n �= 0 is the positive integer associated to π, it follows that exists n−1 such
that n ∗n−1 = n−1 ∗n = 1 mod p [6]. Thus, π−1 is the permutation associated
to n−1 such that π � π−1 = π−1 � π = 1

Now let us address another problem. Suppose that permutation π is a
function that goes from the set {0, 1, 2, . . . , m − 1} to itself; then the inverse
permutation, denoted as ¬π, is that one which makes the following true:

¬π ◦ π = 0

Remark 2.6 Notice that in the preceding expression, symbol ◦ represents
function composition.

Now, if we consider the unary operation U(π) = ¬π, it is not complicated
to prove that it is not necessarily closed on set Πp

m: given π ∈ Πp
m, it is not

necessary that ¬π ∈ Πp
m. However, operation U(π) is closed in Πm since this

latter set contains all permutations of array 0, 1, 2, . . . , m − 1. The former
property is relevant given that symmetric cryptosystems —such as DES or
Triple-DES— start with a fixed permutation π [1],[7], and at the end of the
cipher cycle permutation ¬π is applied.

3 How the DES and Triple-DES Cryptosys-

tems are Strengthened

It is well known that both the DES and Triple-DES cryptosystems begin with
a fixed permutation [1]-[9]. In fact, it can be stated that in every cryptosystem
of the Substitution Permutation Network kind, there is involved a permutation
considered to be fixed. To this moment, no proposal has been made to allow
these fixed permutation to be variable. These fixed permutations are applied
by means of a table. For the DES and Triple-DES cryptosystems, an initial
permutation IP is applied at the beginning of the cipher process, while at
the end the inverse permutation ¬ (IP ) is used. The IP permutation and the
DES algorithm description are presented in [10]. It is noteworthy that the
same permutation is used in the case of Triple-DES.

Now, by using the algorithm described in Section 1, it can be verified that
the number associated to the IP permutation of the international norm is:
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nIP = 1145717915565593966585098047364889558943238666054

87715807731692261338775284031094352753279

In the present work, the cipher algorithms used do not apply permutation
¬ (IP ) at the end of the cipher process. These algorithm shall be called, within
this work, modified DES and Triple-DES. The former poses no problem, given
that permutation IP does not increment the complexity of the DES and Triple-
DES algorithms, since it is fixed. Actually, the initial block may be considered
as clear text: L0 and R0 [8].

On the other hand, it is important to notice that a brute-force attack would
not be feasible on a DES cryptosystem modified with a variable permutation.
This is so because it would not be enough to know a block of clear text and its
corresponding ciphered text, and try all 256 keys (a process which currently is
done [1]), since the initial permutation would not be known. Strictly speaking,
a variable initial permutation would force a brute-force attack to try the 256

possible binary keys for each permutation and find the right array at the
output. It is clear that this would make this kind of cryptanalysis unfeasible,
computationally speaking.

In this sense, one of the proposals of the current work is that the initial
permutation IP applied at the beginning of the modified Triple-DES or DES,
be variable.

Another relevant point is that by starting with a variable permutation we
obtain a property similar to whitening [7], which the most recent encryption
algorithms, such as AES [11], [12] posses.

In order to illustrate the latter, a nEP different from nIP is presented:

nEP = 98976714136546768494654687987987977777777779789465465465

413212315646549879486541351590214

The permutation corresponding to such number, EP , is presented in table
1.
Let us now discuss how the complexity of the modified DES and Triple-

DES cryptosystems is increased when proposing a variable initial permutation.
Given that the modified DES and Triple-DES cryptosystems begin their cipher
process with strings of 64 bits in length, it follows that there are 264 different
possibilities of input and 264 different possibilities of output [13]. However, if
these output possibilities are seen as an array, there are (264)! different output
arrays.

In this point some notation specifications will be done. Let the encryption
processes of modified DES and Triple DES be denoted as e(X)K,P . In this
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EP
49 59 7 12 28 16 43 34
45 41 36 10 17 27 4 25
23 22 63 55 57 44 46 40
6 24 5 42 37 20 47 11
19 50 53 21 8 2 33 13
39 29 56 61 54 15 9 18
31 1 35 60 30 58 26 51
32 62 3 48 52 38 0 14

Table 1: Example permutation EP

case, X is a 64 bits string representing the plain text; K is the key, which
can be a 64 or 128 bits string depending on which algorithm is being used. P
is a permutation of the positions of a string 64 bits long. Also, e(X)K,P has
associated an output array for some K,P given, which is of this form:

e(00 . . . 0)K,P = Y0, . . . , e(11 . . . 1)K,P = Y264−1

It is not complicated to show that the modified DES and Triple-DES al-
gorithms define a one-to-one function, given that each round is a one-to-one
function. The latter is easily proved by reductio ad absurdum. Thus, the mod-
ified DES and Triple-DES algorithms can be seen as the composition of either
16 or 48 one-to-one functions, respectively.

Now, in order to know whether each of the 64! ∼= 2300 possible permutations
has a different output array —which would prove complexity to be al least
2300—, the following theorem is presented.

Theorem 3.1 Given two permutations P1 �= P2 on the positions of 64 bits
strings, and the fact that the key K of either 64 or 128 bits of length is con-
sidered to be fixed, then functions e(X)K,P1, e(X)K,P2 define different arrays;
that is, they cipher in a different manner.

Proof. If P1 �= P2, then there exists at least one 64 bits string, say X0,
such that P1(X

0) �= P2(X
0). This is true, since if P1 �= P2 it means that there

are at least 2 positions where P1 and P2 are different.
Suppose there are i1, i2, . . . , ik different positions with 2 ≤ k ≤ 64. Now, if

a 64 bits long string is built by making xi1 = 0, xi2 = 1, . . . , xik = 0 or xik = 1,
depending on whether k is odd or even. Then, the resulting string is:

C1 = x1, . . . , xi1−1, 0, xi1+1, . . . , xi2−1, 1, xi2+1, . . . , xik−1, 0 or 1, xik+1, . . . , x64
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Since P1 �= P2 in positions i1, i2, . . . , ik, than values xi1 = 0, xi2 = 1, . . . , xik =
0 or xik = 1 are ordered in a different manner depending on P1 or P2 being
applied to string C1.

Now, let us denote P1(X
0) = TP1, P2(X

0) = TP2 and e∗(X)K as the
encryption process followed after applying the initial permutation P ; that is,
e∗(X)K has as input arguments either TP1 or TP2. Also, since e∗(X)K is
built by means of succesive one-to-one functions, it follows that e∗(TP1)K �=
e∗(TP2)K ; remember that K is fixed. Therefore, it is concluded that the arrays
associated to e(X)K,P1 and e(X)K,P2 are different, since there is at least one
position different on both arrays; this means that they cipher differently.

Notice that 2300 
 (264)!, and so it can be said that all permutations act
as different keys, since they will give different output arrays. In this sense, it
can be said that there are at least 2300 possible keys, which is greatly superior
to 256 for DES and 2112 for Triple-DES.

4 Conclusions

After the analysis of the preceding sections, it can be observed that an imme-
diate application of isomorphism Im : Nm −→ Πm is to consider permutations
as keys in symmetrical cryptosystems of the Substitution Permutation Net-
work kind; more specifically, its application to the DES and Triple-DES cryp-
tosystems —with some minor modifications—was shown. The latter allows a
computational complexity increase in said cryptosystems, such as in the case
of the modifed Triple-DES which goes from 2112 to 2300. On the other hand, in
order to execute the differential and linear attacks on the DES cryptosystem,
it is necessary to reach the boxes [2],[3]. However, if the initial permutation is
variable, these kind of procedures cannot take place in the first round.

In general, it can be said that by using permutations as keys, it is possible
to increase the computational complexity of any Substitution Permutation
Network cryptosystem, against a brute-force attack, and differential and linear
cryptanalysis.

On the other hand, it is noteworthy to remark that operating permuta-
tions as numbers is convenient, given that asymmetrical criptosystems such as
RSA [14] cipher numbers, thus enabling this result to work on a Public Key
Infrastructure (PKI) schema [15].

Also, it was shown how to build a field on the set of permutations Πp
m,

where p < m! is a prime number.
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