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Abstract

This paper studies the general solutions of a system of partial dif-
ferential equations, which can describe the finite deformation of an in-
compressible hyperelastic cylindrical tube composed of the known neo-
Hookean material. We first formulate the mathematical model based on
the theory of nonlinear elasticity, and then reduce the partial differen-
tial equations to a third order nonlinear ordinary differential equation
by using the boundary conditions. Finally, we successfully obtain the
general solutions of the problem.
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1 Formulation of mathematical model

The purpose of this paper is to study the problem of axially symmetric defor-

mation of an incompressible hyperelastic cylindrical tube in the pre-stressed

state, namely, the tube is subjected to a uniform prescribed axial stretch λ3 > 0

and the lateral surface of the tube is traction-free.

Let R, Θ, Z and r, θ, z be systems of cylindrical coordinates in the unde-

formed and the deformed state of the tube, respectively. Under the assumption

of axially symmetric deformation, the deformed configuration is given by

r = r(R, Z), 0 < B < R ≤ A; θ = Θ, z = λ3Z (1)
1Supported by the National Natural Science Foundation of China (10872045) and the

Science Foundation of China Postdoctor (20070421049).



992 Xiaojian Zhang, Xuegang Yuan, Datian Niu and Long Wang

where r = r(R, Z) is an undetermined deformation function, A and B are radii

of the inner and the outer surfaces of the undeformed tube. The deformation

gradient is given by [1,2,3]

F = rRer ⊗ ER + rZer ⊗ EZ + (r/R)eθ ⊗ EΘ + λ3ez ⊗EZ (2)

In this paper, (•)x denotes the partial derivative of • with respect to the

variable x.

For incompressible hyper-elastic materials, the incompressibility condition re-

quires that detF = 1, i.e., ∂r
∂R

rλ3

R
= 1, so we have

r(R, Z) = (R2/λ3 + f(Z))1/2 (3)

where f(Z) is an undetermined function with respect to Z. Obviously, the

deformation function r(R, Z) can be completely described by the form of f(Z).

In the absence of body force, the differential equations which describe the finite

deformation of the tube are given by [1,3]

(SrR)R + (SrZ)Z + R−1(SrR − SθΘ) = 0 (4)

(SzR)R + (SzZ)Z + R−1SzR = 0 (5)

where

SrR = μrR − λ3r

R
p, SrZ = μrZ , SθΘ = μ

r

R
− R

r
p,

SzR =
rZr

R
p, SzZ = μλ3 − rRr

R
p (6)

are the nonlinear components of the Piola-Kirchhoff stress tensor S correspond-

ing to the known neo-Hookean material [1,2].

Since the lateral surface of the tube is traction-free, the boundary conditions

are given by

SrR(B) = SrR(A) = 0, SzR(B) = SzR(A) = 0 (7)

In sum, the mathematical model that describes the finite deformation of an in-

compressible hyperelastic cylindrical tube composed of the known neo-Hookean

material in the pre-stressed state is composed of Eqs.(3)∼(7).

Note. For some special deformation configurations of incompressible (or com-

pressible) hyperelastic cylindrical tube, many significant investigations have

been made, such as [4]∼[7].
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2 Solutions

From Eq.(3), it is easy to show that the following expressions are valid

rRR(R, Z) =
1

λ3

f(Z)

r3
, rZZ(R, Z) =

1

2
f ′′(Z)r−1 − 1

4
f ′2(Z)r−3 (8)

Moreover, substituting Eq.(6) into Eq.(4) and using the incompressibility con-

dition rRrλ3/R = 1, we obtain

pR(R, Z) =
μ

λ3

R

r
[rRR + rZZ + R−2(rRR − r)] (9)

Substituting Eq.(8) into Eq.(9) and integrating the resulting equation with

respect to R from R to A, we have

p(R, Z) = − μ

λ3

∫ A

R
[rRR + rZZ + R−2(rRR − r)]

R

r
dR

= −1

2
μ

(
−f(Z)

λ3r2
A

+
1

2
f ′′(Z) ln r2

A +
1

4
f ′2(Z)

1

r2
A

+
1

λ3
ln r2

A

+
f(Z)

λ3r2
− 1

2
f ′′(Z) ln r2 − 1

4
f ′2(Z)

1

r2
− 1

λ3

ln r2

)
+

μ

λ3

ln
A

R
(10)

where rA(A, Z) = (A2/λ3 + f(Z))1/2.

Further, multiplying both sides of Eq.(5) by R, and then integrating the re-

sulting equation from B to A, it yields

∫ A

B
(SzZ)ZRdR = 0 (11)

upon using the boundary conditions (7). Substituting Eq.(6)5 into Eq.(11)

leads to(
f(Z)

λ3r
4
A

f ′(Z) +
1

2
f ′′′(Z) ln r2

A + f ′(Z)f ′′(Z)
1

r2
A

− 1

4
f ′3(Z)

1

r4
A

)
A2 − B2

λ3

+

(
f(Z)

λ3r2
A

f ′(Z) − 1

2
f ′′′(Z)(r2

A ln r2
A − r2

A) − f ′(Z)f ′′(Z) ln r2
A −1

4
f ′3(Z)

1

r2
A

)
−

(
f(Z)

λ3r
2
B

f ′(Z) − 1

2
f ′′′(Z)(r2

B ln r2
B − r2

B) − f ′(Z)f ′′(Z) ln r2
B −1

4
f ′3(Z)

1

r2
B

)
= 0

(12)

where rA(A, Z) = (A2/λ3 + f(Z))1/2. Obviously, Eq.(12) is a third order

nonlinear ordinary differential equation.
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Integrating Eq.(12) with respect to Z, we have

(
−f(Z)

λ3r2
A

+
1

2
f ′′(Z) ln r2

A +
1

4
f ′2(Z)

1

r2
A

+
1

λ3
ln r2

A

)
A2 − B2

λ3

−A2

λ2
3

ln r2
A − 1

2
f ′′(Z)

(
r2
A ln r2

A − r2
A

)
− 1

4
f ′2(Z) ln r2

A +
B2

λ2
3

ln r2
B

+
1

2
f ′′(Z)

(
r2
B ln r2

B − r2
B

)
+

1

4
f ′2(Z) ln r2

B = D1 (13)

where D1 is an integral constant.

Multiplying both sides of Eq.(13) by f ′(Z), and then integrating it with respect

to Z, we have(
− 2

λ3

f(Z) +
2A2

λ2
3

ln r2
A +

1

4
f ′2(Z) ln r2

A +
1

λ3

f(Z) ln r2
A

)
A2 − B2

λ3

−A2

λ2
3

f(Z) ln r2
A +

A2

λ2
3

f(Z) − A4

λ3
3

ln r2
A − 1

4
f ′2(Z)

(
r2
A ln r2

A − r2
A

)

+
B2

λ2
3

f(Z) ln r2
B − B2

λ2
3

f(Z) +
B4

λ3
3

ln r2
B +

1

4
f ′2(Z)

(
r2
B ln r2

B − r2
B

)

= D1f(Z) + D2 (14)

where D2 is also an integral constant. The simplest form of Eq.(14) maybe

written as

−A2

λ2
3

f(Z) +
B2

λ2
3

f(Z) +
A4

λ3
3

ln r2
A − 2A2B2

λ3
3

ln r2
A +

B4

λ3
3

ln r2
B

−B2

λ2
3

f(Z) ln r2
A +

B2

λ2
3

f(Z) ln r2
B − D1f(Z) − D2

=
1

4
f ′2(Z)

(
r2
B ln

r2
A

r2
B

+
B2 − A2

λ3

)
(15)

It is not difficult to show that the implicit solution of f(Z) is given by

∫ f(Z)

f(0)

(
G(f(w), λ3)

H(f(w), λ3)

)1/2

df(w) = Z (16)

where

G(f(Z), λ3) =
1

4

(
r2
B ln

r2
A

r2
B

+
B2 − A2

λ3

)
,

H(f(Z), λ3) = −A2

λ2
3

f(Z) +
B2

λ2
3

f(Z) +
A4

λ3
3

ln r2
A − 2A2B2

λ3
3

ln r2
A +

B4

λ3
3

ln r2
B
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−B2

λ2
3

f(Z) ln r2
A +

B2

λ2
3

f(Z) ln r2
B − D1f(Z) − D2

Remark. Since the deformation is axially symmetric, the function f(Z) must

be a symmetric function with respect to Z = 0. If some boundary conditions

are imposed, the integral constants in the general solution (16) will be deter-

mined, in other words, for the given material and structure parameters, the

corresponding solution (3) will completely describes the finite deformation of

the incompressible incompressible hyperelastic cylindrical tube.

3 Conclusions

In this paper, we formulate the finite deformation problem of an incompress-

ible incompressible hyperelastic cylindrical tube in the pre-stressed state as

a class of boundary value problems of a system of nonlinear partial differen-

tial equations. Moreover, we successfully obtain the general solutions of the

problem.
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