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Abstract

In this paper we propose a study of the boundary value problem
modeling in the context of linear elasticity, the deflection of a rectangu-
lar plate embedded on two opposite sides, the two other sides are free,
and subjected to a given density of forces. The question that arises is
that of the approximation of the solution of this problem. The basic
idea is that if the solution is quite regular, then its rotational is solu-
tion of stokes problem, this result is well known in the case of Dirichlet
problem for bilaplacien.
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1 Introduction

As with all equations of order four, the finite element approximation conform,
if it has the advantage of giving a continuous approximation of the solution
and its derivatives, however, requires a large amount of calculations. There
are, of course, other approximation methods such as the mixed methods and
finite element methods not conform. What we propose here is a method that
a priority has the advantage of a conform method but needs a lower cost.If the
solution is quite regular, then its rotational is solution of stokes problem.
In section 2 we recall the description of the problem. In section 3 we give the
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variational formulation of problem and we study the regularity of the solution
of this problem and in section 4 we show that the rotational of the solution is
solution of a Stokes-type system, and we show that latter admits a variational
formulation. In section 5 we show how the solution can be obtained from its
rotational.The numerical results are obtained using Lagrange finite element
[1], [7] for the rotational solution and for the solution. we compare the results
obtained with those given by the conform Method using the Argyris finite
element.

2 Description of the problem

We study the problem of deformation of a thin homogeneous isotropic plate. In
its non-deformed state, the plate is considered as two-dimensional environment,
occupies a region Ω the open square ]0, 1[ × ]0, 1[ of R2 of border Γ = ∂Ω ;
Γ = ΓV ∪ΓH where ΓV = {0, 1}× ]0, 1[ = Γ2 ∪Γ4 and ΓH = ]0, 1[×{0, 1} =
Γ1 ∪ Γ3 . It is assumed that the plate is subjected to a transverse load F ,
u = u(x, y) deflection of the plate then verifies:

−Δ2u = F in Ω, (1)

u =
∂u

∂η
= 0 on ΓV , (2)

Δu− (1 − ν)
∂2u

∂τ 2
= h on ΓH , (3)

(1 − ν)
∂3u

∂η∂τ 2
− ∂(Δu)

∂η
= g on ΓH , (4)

ν is the poisson coefficient.

3 Variational formulation of the problem

We introduce the functional space V =
{
v ∈ H2(Ω); v = ∂v

∂η
= 0 on ΓV

}
we consider:
The bilinear form a(u, v) is set to V × V by:
a(u, v) =

∫
Ω

(Δu Δv + (1 − ν)(2 ∂2u
∂x∂y

∂2v
∂x∂y

− ∂2u
∂x2

∂2v
∂y2

− ∂2u
∂y2

∂2v
∂x2 ))dΩ

The linear form L(.) is set to V by:
L(v) =

∫
Ω
F.v dΩ − ∫

ΓH
g.v dσ +

∫
ΓH
h.∂v

∂η
dσ.

Theorem 3.1 For F, h and g given in L2(Ω), H
3
2 (ΓH) and H

1
2 (ΓH) respec-

tively, the variational problem is:

{
Find u in V such that
a(u, v) = L(v), ∀v ∈ V
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admits a unique solution.

Proof.The bilinear form a(., .) is continuous coercive on V × V.
The linear form L(.) is continuous on V.
It follows from the Lax Milgram theorem that the problem admits a unique
variational solution u in V.
We will need farther regularity conditions on the solution u. which can show
that u is in H4(Ω)

4 Transition to a system of Stokes type

We set −→ϕ =
−→
rotu then for u in H4, (Ω) −→ϕ belongs to H3(Ω).

We take
−→
f in H1(Ω) such that rot

−→
f = F

Using the identity Δ2 = −rot(Δ−→
rot)

Equation (1) of the problem becomes:

−rot(Δ −→
rotu) = rot

−→
f in Ω

rot(−Δ
−→
rotu−−→

f ) = 0 in Ω

(−Δ
−→
rotu−−→

f ) ∈ L2(Ω) then there exists a function (−p) of H1(Ω) such that:

−Δ
−→
rotu−−→

f = −−→∇p in Ω that is −Δ−→ϕ +
−→∇p =

−→
f−→ϕ =

−→
rotu then div −→ϕ = div(

−→
rotu) = 0 in Ω

Boundary condition on ΓV :
−→ϕ�ΓV

=
−→
rotu�ΓV

= (
−→
rotu · −→η )−→η + (

−→
rotu · −→τ )−→τ =∂u

∂τ
−→η − ∂u

∂η
−→τ = 0

Boundary condition on ΓH :
Equation (3) of the problem gives:
∂ϕ1

∂y
− ν ∂ϕ2

∂x
= h on ΓH

Equation (4) of the problem gives:

(∂
2ϕ1

∂y2
+ (2 − ν)∂

2ϕ1

∂x2 )ηy = g on ΓH
Thus we obtain the system:

(P1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δ−→ϕ +
−→∇p =

−→
f in Ω

div −→ϕ = 0 in Ω
−→ϕ = 0 on ΓV

∂ϕ1

∂y
− ν ∂ϕ2

∂x
= h on ΓH

(∂
2ϕ1

∂y2
+ (2 − ν)∂

2ϕ1

∂x2 )ηy = g on ΓH

Variational formulation of the problem
We introduce the space V defined by:

V =
{−→
ψ ∈ H1(Ω) , div

−→
ψ = 0 in Ω ,

−→
ψ =

−→
0 on ΓV

}
The variational problem is:
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Find −→ϕ ∈ V such that:
a(−→ϕ , −→ψ ) = l(

−→
ψ ), ∀−→ψ ∈ V

where the bilinear form a(., .) is defined on V × V by:

a(−→ϕ ,−→ψ ) =
∑2

i=1

∫
Ω
−→�ϕi

−→� ψidΩ−ν ∫
Ω

(
∂ϕ1

∂x
· ∂ψ1

∂x
+ ∂ϕ2

∂y
· ∂ψ2
∂y

+ ∂ϕ1

∂y
· ∂ψ2

∂x
+ ∂ϕ2

∂x
· ∂ψ1

∂y

)
dΩ

The form l(·) is defined on V by:

l(
−→
ψ ) =

∫
Ω

−→
f .

−→
ψ dΩ +

∫
ΓH
h ψ1ηydσ

Theorem 4.1 For all
−→
f , h and g given in H1(Ω) , H

3
2 (ΓH) and H

1
2 (ΓH)

respectively, the variational problem admits a unique solution in V .

Proof. Simply check the hypotheses of the Lax Milgram theorem for
−→
f in

H1(Ω) and h in H
3
2 (ΓH) then the application:

−→
ψ −→ l(

−→
ψ ) =

∫
Ω

−→
f .

−→
ψ dΩ

+
∫

ΓH
h ψ1ηydσ is a continuous linear form on V . The bilinear form a(·, ·) is

continuous coercive on V × V

5 Mixed formulation

To use an approximation of the problem (P1) by mixed finite element La-
grange, we give its mixed variational formulation.
we introduce the spaces:

X =
{−→v ∈ H1(Ω) , −→v =

−→
0 on ΓV

}
M =

{
q ∈ L2(Ω) ,

∫
Ω
qdΩ = 0

}
= L2

0(Ω)
we Consider the bilinear form a(·, ·) defined on M ×M by:

a(−→ϕ ,−→ψ ) =
∑2

i=1

∫
Ω
−→�ϕi

−→� ψidΩ−ν ∫
Ω

(
∂ϕ1

∂x
· ∂ψ1

∂x
+ ∂ϕ2

∂y
· ∂ψ2
∂y

+ ∂ϕ1

∂y
· ∂ψ2

∂x
+ ∂ϕ2

∂x
· ∂ψ1

∂y

)
The bilinear form b(·,·) defined on M ×M by:
b(−→ϕ , q) = − ∫

Ω
qdiv(−→ϕ )dΩ

The form l(·) is defined on X by:

l(
−→
ψ ) =

∫
Ω

−→
f .

−→
ψ dΩ +

∫
ΓH
h ψ1ηydσ

The associated mixed variational problem is written as follows:⎧⎨
⎩

find (−→ϕ , p) ∈ X ×M such as

a(−→ϕ ,−→ψ ) + b(−→ϕ , p) = l(
−→
ψ ) , ∀−→ψ ∈ X

b(−→ϕ , q) = 0 , ∀q ∈M

Theorem 5.1 The mixed variational problem admits a unique solution (−→ϕ , p) ∈
X ×M

Proof. The bilinear form a(·, ·) is continuous coercive on X×X.. The bilinear

form b(·, ·) is continuous on X×M. For
−→
f and h given in L2(Ω) and H

3
2 (ΓH)

respectively, the form l(·) is continuous on X. The condition of compatibility
between the spaces X and M is verified, i.e. there exists a constant β � 0,
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such that sup
v∈X

|b(v, q)|
‖v‖X

≥ β ‖q‖M Then the mixed variational problem admits a

unique solution (−→ϕ , p) ∈ X ×M

Determination of the plate deflection u .
Problems verified by u:
After determining −→ϕ =

−→
rot u , solution of the problem (P1) we determine

the deflection u of the plate by integrating one derivative of u, or in solving
boundary value problems of order two.
Integration:
we have the condition u = 0 on ΓV then integrating the derivative of u with x.
Let (x0, y0) ∈ {0} × ]0, 1[ ⊂ ΓV then
u (x, y) − u (x0, y0) =

∫ x

x0

∂u
∂x

(s, y)ds = − ∫ x

x0
ϕ2(s, y)ds

so u (x, y) = − ∫ x

x0
ϕ2(s, y)ds

Second-order problem:
we have: −Δ u = −(∂

2u
∂x2 + ∂2u

∂y2
) = −(−∂ϕ2

∂x
+ ∂ϕ1

∂y
) = rot−→ϕ in Ω

Moreover u = 0 on ΓV .
It remains to find the boundary conditions on ΓH .
Two cases occur:
1◦ case the Dirichlet Problem:
We have −→ϕ =

−→
rot u in Ω then −∂u

∂x
= ϕ2 in Ω therefore in particular on ΓH

i.e. −∂u
∂x

= ϕ2 on ΓH which can be integrated according to the variable x.
we obtain on Γ1 :
−∂u
∂x

(x, 0) = ϕ2(x, 0)
− ∫ x

0
∂u
∂x

(t, 0)dt =
∫ x

0
ϕ2(t, 0)dt for 0 ≤ x ≤ 1

−(u(x, 0) − u(0, 0)) =
∫ x

0
ϕ2(t, 0)dt

We know that u ∈ H4(Ω) therefore u ∈ C0(Ω) and the values u(x, 0) and
u(0, 0) make sense. Moreover u = 0 on ΓV then u(0, 0) = 0
where: u(x, 0) = − ∫ x

0
ϕ2(t, 0)dt

We note u |Γ1= h1

In the same way on the Γ3, we get:
u(x, 1) = − ∫ x

0
ϕ2(t, 1)dt We note u |Γ3= h3

The conditions of compatibility are necessarily verified. Hence the problem:

(P2)

⎧⎪⎪⎨
⎪⎪⎩

−Δu = rot−→ϕ in Ω
u = 0 on ΓV
u = h1 on Γ1

u = h3 on Γ3
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we note by (F) the function defined by:

F =

⎧⎪⎪⎨
⎪⎪⎩

h1 = − ∫ x

0
ϕ2(t, 0)dt on Γ1

h2 = 0 on Γ2

h3 = − ∫ x

0
ϕ2(t, 1)dt on Γ3

h4 = 0 on Γ4

We can then write u |Γi
= hi , i = 1, ..., 4

There is an increase φ ∈ H4(Ω) as φ |Γi
= hi , i = 1, ..., 4

We set U = u− φ and we have the following homogeneous problem:

(P3)

{ −ΔU = rot−→ϕ + Δφ in Ω
U = 0 on Γ

2◦ case mixed problem (Dirichlet-Neumann):
We have −→ϕ =

−→
rot u in Ω

thus particular on ΓH : ∂u
∂y

= ϕ1

We keep the condition u = 0 on ΓV
We get the problem:

(P4)

⎧⎨
⎩

−Δu = rot−→ϕ in Ω
u = 0 on ΓV
∂u
∂η

= ϕ1ηy on ΓH

Variational formulation of these two problems:
For the first case we set V = H1

0 (Ω) which combines the variational problem:{
Find U ∈ H1

0 (Ω) such that
a(U, v) = l1(v) , ∀v ∈ H1

0 (Ω)
where a(., .) is the bilinear continuous coercive on H1

0 (Ω)×H1
0 (Ω) defined by:

a(U, v) =
∫

Ω

−→∇U
−→∇v dΩ

and l1(.)is the continuous linear form on H1
0 (Ω) defined by:

l1(v) =
∫

Ω
rot−→ϕ . v dΩ − ∫

Ω

−→∇φ
−→∇v dΩ all assumptions of Lax-Milgram are

checked and it was the existence and uniqueness in H1
0 (Ω).

The same for the seconde where we set:
W = {v ∈ H1(Ω) , v = 0 sur ΓV }
which combines the variational problem:{

Find u ∈ W such as
a(u, v) = l2(v) , ∀v ∈W

where a(., .) is coercive continuous bilinear form on W ×W defined by:
a(u, v) =

∫
Ω

−→∇u
−→∇v dΩ

and l2(.) is the continuous linear form on W defined by:
l2(v) =

∫
Ω
rot−→ϕ . v dΩ +

∫
ΓH
φ1 v ηydσ

all assumptions of Lax-Milgram are checked and it was the existence and
uniqueness in W.
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6 Conclusion

We tested three related problems for several chosen deflections. We notice
that we have the convergence of the solution calculated towards the exact
solution, curves are close, we get a good estimate of the solution. The order of
Stokes system is significantly less than the order of the bilaplacien system. The
problem studied is particular as it concerns the problem in the open square
domain. As further works we will study more general geometries. For example
in a circular domain.
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