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Abstract 
 
In this paper a set of formulations of an N-dimensional (ND) autoregressive-moving 
average (ARMA) model identification method, and a two-dimensional (2D) 
forgetting factor approach in time-series modelling, is developed. An optimum 
estimation and prediction approach in healthcare picture smoothing based on a 2D 
ARMA modelling, has been implemented; and satisfactory results have been 
obtained. Our approach indicates the desirability of accurate statistical modelling of 
high-dimensional or periodic digital data. 
 
Keywords: N-dimensional ARMA Model; Forgetting factor.  
 
 

1. Introduction 
 
Most recently there has been remarkable progress (see O’Neill et al, 2007) in 
electronic healthcare as well as in informatics. One important benefit of this 
perspective and its application to healthcare research is that our life expectancy is 
now significantly greater than it was even a few decades ago. This progress, leading 
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to generally more ageing societies, is of importance to the organisation of healthcare 
services, technology management and the future development of its information 
systems, in particular 2D time-series signal processing and smoothing systems 
applied to services and technology management for digital signal processing. 
 
The latest major advances in powerful computing equipment, which undertake a shift 
from paper-based to computer-based processing and storage, as well as an increase of 
data in electronic service and technology settings, have made a tremendous impact on 
development of 2D time-series smoothing approaches for electronic services and 
technology monitoring systems. 2D time-series smoothing is a preliminary process in 
many electronic healthcare applications. It aims to reduce ‘noise’ in 2D time-series 
signals. All 2D time-series modelling tasks may benefit from the reduction of ‘noise’. 
Our paper provides a formulation of the high-dimensional forgetting factor approach 
in N-dimensional (ND) data. We also design and describe an order identification 
algorithm of a ND ARMA model. The proposed algorithm is a general case of a 2D 
ARMA identification approach for smoothing of 2D time-series data. 
 
The remaining organisation of this paper is as follows. Section 2 describes 2D 
ARMA modelling. Section 3 shows an identification algorithm of ND ARMA 
modelling, which is a general case of 2D ARMA identification procedures. Section 4 
presents a high-dimensional forgetting factor approach. Section 5 exhibits estimation 
recursions of 2D ARMA modelling. Section 6 provides the prediction and estimation 
of an identified chromosome picture. Section 7 summarises the paper. 

 
 

2. 2D ARMA modelling 
 

1D ARMA models always specify a factorization of the two-sided z-transform 
rational function 0φ (z) of the auto-covariance matrix yR ( ) E{y(t )y(t)}τ = + τ . But in 
the 2D case such a factorization may not exist for 0 1 2(z , z )Φ , which is traditionally 
identified as follows:    

 
1 2 1 2M M N N

i j i j 1 i j
0 1 2 y 1 2 ij 1 2 ij 1 2

i 0 j 0 i 0 j 0 i 0 j 0
(z , z ) R (i, j)z z ( a z z ) ( f z z )

∞ ∞ −

= = = = = =
Φ = =∑ ∑ ∑ ∑ ∑ ∑ , (1) 

with 00a 1= . On combining these last two equations and equating coefficients of 
identical powers of 1z  and 2z  one obtains 

 
1 2M M

rs 1 2 y 1 2
r 0s 0

a u(t r)u(t s)R (t r, t s) 0
= =

− − − − =∑ ∑            (2) 

for all (t1,t2) ∉  ((t1,t2): 0 < t1 < M1, 0 < t2 < M2), u(x)=0 as x < 0; =1, as x ≥ 0. Earlier 
work has considered the identification of 1D ARMA model based on a previously  
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identified infinite dimensional AR model. This paper extends and modifies this 
approach to show the 2D ARMA model of equation (2) can be identified from a one-
quadrant, 2D spectrum of the form 

 i j
0 1 2 i, j 1 2

i 0 j 0
(z , z ) c z z

∞ ∞

= =
Φ = ∑ ∑  with 0,0c 1.=   (3) 

In an effort to distinguish between computational and fundamental difficulties, we 
will make two assumptions. In the first place, to reduce the computational difficulties 
we have assumed that R(i,j)=R(i,-j). This assumption is necessary for the one -
quadrant spectrum of equation (3) to characterize the process. 
 
We also assume, indirectly, that the numerator and denominator polynomials of 
equation (3) have closed-order property, i.e. i, jf 0,=  if i,0f  or 0, jf 0= ; and i, ja 0,=  if 

i,oa  or 0, ja 0= . The identification procedure developed in this paper automatically 
truncates the model in such a way that the solution is correct only when the closed-
order property is satisfied. Some ideas as to how this truncation can be overcome are 
considered briefly in the conclusion. It should also be observed that for factorable 
processes, the closed-order assumption is automatically satisfied.  

 
 
 

3. Identification of ND ARMA modelling 
 
If the 2D ARMA model of (2) exists and satisfies (3), then 

1 2 1 2M M N N
i j i j i j

i, j 1 2 i, j 1 2 i, j 1 2
i 0 j 0 i 0 j 0 i 0 j 0

a z z c z z f z z
∞ ∞

= = = = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
=∑ ∑ ∑ ∑ ∑ ∑⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
               

where i, ja 0=  for 1i M>  or 2j M .> Equating the coefficients of like powers of 

i j
1 2z , z , we have 

n k

n,k n r,k s r,s, 1 2
r 0s 0

f a c forn 1,2,...N ;k 1,2,...N− −
= =

= = =∑∑            

For k=0, one obtains 
n

n,0 n r,0 r,0
r 0

f a c ,−
=

= ∑ , for n=1, 2,·· 1N ,                                      

and  
1

1

N m

n m r,0 r,0
r m

0 a c
+

+ −
=

= ∑  for m=1,2,..., 1M                                       

In the N-dimensional case, the measured power spectrum, 0 1 2 n(z , z , z )φ L  will be of 

the form N1 2

1 2 n 1 2 N

1 2 N

ii i
0 1 2 n i ,i , ,i z z z

i 0 i 0 i 0
( z , z , z ) c

∞ ∞ ∞

= = =

φ = ∑ ∑ ∑ KL K K  (4) 

If the power spectrum 0 1 2 n(z , z , z )φ L  can be represented by 
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N1 2
N1 2

1 2 n 1 2 N

1 2 N

MM M
ii i 1

0 1 2 n i ,i , , i z z z
i 0 i 0 i 0

( z , z , z ) ( a ) −

= = =

φ = ∑ ∑ ∑ KL K K

N1 2
N1 2

1 2 n 1 2 N

1 2 N

NN N
ii i

i , i , , i z z z
i 0 i 0 i 0

( f )
= = =
∑ ∑ ∑ KK K   

where 1N  ⊄  1M  2N  ⊄  2 N NM , , N M⊄K  , and with closed-order property, then 
  

N1 2

1 2 n 1 2 N

1 2 N

ii i
i , i , ,i z z z

i 0 i 0 i 0

c
∞ ∞ ∞

= = =
∑ ∑ ∑ KK K

N1 2
N1 2

1 2 n 1 2 N

1 2 N

MM M
ii i 1

i ,i , , i z z z
i 0 i 0 i 0

( a ) −

= = =

= ∑ ∑ ∑ KK K  

 x
N1 2

N1 2

1 2 n 1 2 N

1 2 N

NN N
ii i

i , i , , i z z z
i 0 i 0 i 0

( f )
= = =
∑ ∑ ∑ KK K    

Cross multiplication and equating the coefficients of like powers of 1 2 nz , z , zL  yields: 

1 1 1 1

1 1 1 1

11 1 1

N ,0 0 N 1,0 0 N M 1,0 0 1,0 0

N 1,0 0 N ,0 0 N M 2 ,0 0 2 ,0 0

M ,0 0N M 1,0 0 N ,0 0

c c c a
c c c a

.. .

.. .
ac c

− − +

+ − +

+ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

K K K K

K K K K

KK K

L

L

L

L

L

 

 

1

1

1 1 1

N 1,0 01,0 0

2 ,0 0 N 2 ,0 0

1,0 0

M ,0 0 N M ,0 0

ca
a c

.A .

. .
a c

+

+

+

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥× = − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

KK

K K

K

K K

% ; 

1 1 1 1

1 1 1 1

11 1 1

0 ,..N ,..0 0 ,..N 1,..0 0 , N M 1,..0 0 ,..1,..0

0 ,..N 1,..0 0 ,..N ,..0 0 , N M 2 ,..0 0 ,..2 ,..0

0 ,..M ,..00 ,..N M 1,..0 0 ,..N ,..0

c c c a
c c c a

.. .

.. .
ac c

− − +

+ − +

+ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

K

K

L

L

L

L

L
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1

1

i

1 1 1

0 ,..N 1,..00 ,..1,..0

0 ,..2 ,..0 0 ,..N 2 ,..0

0 , 1 , 0

0 ,..M ,..0 0 ,..N M ,..0

ca
a c

. .A

. .

. .
a c

+

+

+

× = −K K
%

. (5) 

The square matrix 
i0, 1 0A K K

%
 in (5) must be non-singular for a unique solution 

i0,.. j ,..0a . Such will be the case if the Mi and Ni specified are of minimal order. 
Therefore the order of the model can be estimated by examining the determinants 
of the  

i0, 1 0A K K%
test matrices. If the coefficients 

1 2 ni , i , , ic K in equation (3) are 
known, we can decide the orders {M1,N1},…,{Mi,Ni}, …, {MN,NN} by testing, 
and the coefficients (

1 2 ni ,i , , ia K ) and (
1 2 ni ,i , ,if K ) in (1) can be uniquely determined. 

Let us consider the shortest path method for determining the order (M1, N1, M2, 
N2) of a higher-order two dimensional ARMA model. 

Step 1: Find the spike in the plot of ( j 1) ( J I ) ii

j ii i

j
i

i

det(A )
DR (I ') , J 1, 2 i 1, 2.

det(A )
− −

−

= = =K  

Step 2: Find the spike in the plot of k ,Jii

( k 1 ) ji , i

i
i

i

det(A )
D R (I ") , k 0,1 j 1, i 1, 2.

det(A )
+

= = − =K  

Step 3: Determine the order Mi, Ni for i=1,2. For example, if the spike location from 

step 1 occurs at 1,3,3 2,4,4

1,4,4 2,5,5

det(A ) det(A )
,

det(A ) det(A )
, and from step 2 a spike occurs at 

1,2,4 2,3,5

1,3,4 2,4,5

det(A ) det(A )
,

det(A ) det(A )
, then an ARMA model with order 

( 1 1 2 2M 2, N 3, M 3, N 4= = = = ) is identified. 
 
 

4. The 2D forgetting factor 
 
The forgetting factor is a data weighting process that gives more weight to recent 
observations in time and space and less weight to earlier data. The use of the 
forgetting factor in time series analysis has attracted considerable interest in recent 
years. For example, Chen et al (2006) utilise a forgetting factor in subset 
autoregressive modelling of the spot aluminium and nickel prices on the London  
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Metal Exchange. In 2-D cases, no previous work investigates the forgetting factor 
approach in combination with applications of time-series modelling in data analysis. 
Our new 2-D and high-D forgetting factor approaches are new and unique and 
conceptually well-advanced. In particular, our new techniques allow detailed 
assessment of how interactions between variables evolve over time by appropriately 
discounting irrelevant distant interactions, thus giving more weight to relevant near 
interactions. This research is at the cutting edge of the application of statistics to the 
data analysis field and yet we are confident it has some practical and tangible 
outcomes.  
 
Consider a 2-D ARMA model of the following form:

 

{

p q p q

t ,r i, j t ,r t i,r j i, j t i,r j t ,r
i 0 j 0 i 0 j 0

i j
i j 0

y(x ) a y(x x ) b (x ) (x ).− − − −
= = = =

≠
= ≠

+ − + ε = ε∑∑ ∑ ∑   

The coefficients i, ja  are obtained by minimising 

{

2

p q p qT R

t,r i, j t ,r t i,r j i, j t i,r j
t 1 r 1 i 0 j 0 i 0 j 0

i j
i j 0

y(x ) a y(x x ) b (x )− − − −
= = = = = =

≠
= ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥κ + − + ε
⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑ ∑∑ ∑ ∑ , 

where κ  is the forgetting profile. Following O’Neill et al (2007), a strategy for 

determining κ  is as follows:  
2 2(T t) (R r)− + −κ = λ  if 1 t T or 1 r R;   ≤ ≤ ≤ ≤ and 1=  if 

T-t=0 and R-r=0.         (7)                    
In (7) λ  denotes the forgetting factor. Therefore κ  = R r−λ  if T-t=0; κ = T t−λ  if R-
r=0. Equation (7) means that ‘forgetting’ of the past or distant occurs from time point 
[T, R].  If λ=1 for every [t,r] then we obtain the ordinary least squares solution. If 
0 1< λ < , the past and distant are weighted down geometrically from [t,r]. In theory, 
the value of λ could be different at different [t, r] (a so-called variable forgetting 
factor). For simplicity, we only consider the fixed forgetting factor case in which the 
value of λ is constant for different [t, r]. 
 
 

5.  Recursive estimations of ARMA modelling 
 
We seek a recursive algorithm for the estimation of a zero-mean, bivariate process 
x(m,n) embedded in y(m,n). The observation noise v(m,n) defined by 

y(m,n) = x(m,n) + v(m,n) 
is assumed, be additive, white, with power V, and independent of x(m,n). The 
autocorrelation matrix of x(m,n) is assumed to be stationary and known. The natural  
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“past” of each observation y(m,n) consists of all y(i,j) with (i,j) in the set S(m,n) 
defined below and depicted in Figure 1. 

S(m,n) = {(i,j) :0 ≤ i ≤ m-1) 0 ≤ j} U {(i,j) : i = m, 0 ≤ j ≤ n-l}     
The optimum, mean-square, one-step prediction of y(m,n) is denoted by ŷ (m,n): 

ŷ (m,n) = E {y(m,n)/y(i.j), (i,j) ∈S(m,n)}   
The optimum, mean-square, filtered estimate of x(m,n) given both past and present 
observations will be denoted by x̂ (m,n):=E {x(m,n)/y(m,n) U y(i,j), (i,j) ∈ S(m.n)} 
The form of recursive algorithms reduce to x̂  (m,n) =a(m,n) ŷ (m,n) + b(m,n) y(m,n). 
We wish to consider algorithms where ŷ(m,n) is based on a limited portion of the past 
and we will compare only the steady state version of these algorithms (i.e. determine 
and consider only the steady state values of a(m,n), b(m,n) and the estimation 
parameters of ŷ(m,n)). By using (2), we now defines, for m> N1, n>N2 
 

M M1 2

rs
r 0s 0

w(m,n) a u(m r)u(n s)y(m r,n s).
= =

Δ − − − −∑∑  (8) 

With this formulation one can see that  

N N1 2

iji 0 j 0

j

ˆ ˆy(m, n) a y(m i, n j) w(m, n).

i j 0
= == − − +

+ ≠

−∑∑  

This is a convenient formulation because Rw and Rwy are non-zero in a limited region 
and ŵ(m,n) becomes relatively easy to determine. It has been shown that: 

ŵ(m,n)= we

T(m,n) we

R (m,i;n, j) ˆ[y(i, j) y(i, j)],
R (i, i; j, j)

−∑  (9) 

where ε (i,j) is the error (y(i,j) - ŷ (.i,j)] or equivalently [w(i,j) - ŵ (i,j)]. The cross-
correlation between w(m,n) and ε(p,q) can be found from 

Tw
w w w

T(m,n) T(p,q) w

R (m,i;n, j)R (m, p;n,q) R (m,p;n,q) R (p,i;q, j)
R (i, i; j, j)

ε
ε ε

∩ ε

= − ∑ ,  

for  T(m,n) S(m,n) (m,n)= −Λ , where  
{ } { }1 1 2(m, n) (i, j) : 0 i m N ,0 j (i.j) : i m N ,0 j n NΛ = ≤ < − ≤ ∪ = − ≤ < − ,  

and T(m,n)  is shown in Figure 2. R(m,p; n,q) is readily determined from equation 
(8). The mean square error e(i,j) is given by w ye(i, j) R (i, i; j, j) R (i, i; j, j)ε ε= =   (10) 
Thus, equations (8 – 10) defines a recursive algorithm based on previous estimates 
and values limited to T(m,n). This algorithm converges rather rapidly enabling one to 
find the steady state weight of ŵ (m,n) and the steady state mean square error e(i,j). 
Usually the number of “significant” weights are far fewer than the number of values 
in T(m,n) resulting in a very near optimum algorithm that is easily implemented. 
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6. An application of 2D ARMA to a healthcare chromosome picture 
 
 A noisy 128 by 96 chromosome picture is processed with the 2D ARMA model. 
White Gaussian zero-mean noise is added of unit variance to produce a SNR of 1. We 
apply a forgetting factor with the value 0.998 to the system involved. A (1, 1; 1, 1) 
ARMA model has been identified for the system. To start recursions, we set the 
initial condition region covered by the upper and left hand edges. It is necessary to set 
the initial condition region; otherwise it will take a very long time to reach the steady 
state. Finally convergence does take place after 8 lines or so. We have w(m,n) =  
y(m,n) 0.776y(m,n 1) 0.506y(m 1,n) 0.346y(m 1,n 1);− − − − + − −  and ŵ(m,n) =  

0.61 (m,n 1) 0.04 (m,n 2) 0.28 (m 1,n 1) 0.42 (m 1,n) 0.03 (m 1,n 1)− ε − − ε − + ε − − − ε − + ε − +
respectively. The signal’s steady state estimate is ˆ ˆx(m,n) 0.31y(m,n) 0.69y(m,n),= +  
where ŷ(m, n) 0.16y(m, n 1) 0.04y(m,n 2) 0.09y(m 1, n)= − − − + − +  
0.06y(m 1,n 1)− − ˆ ˆ0.03y(m 1,n 1) 0.61y(m,n 1) 0.04y(m,n 2)+ − + + − + − +  

ˆ ˆ ˆ ˆ0.42y(m 1,n) 0.42y(m 1,n) 0.28y(m 1,n 1) 0.03y(m 1,n 1).+ − + − − − − − − +  
The mean square error is 0.30 and the filter performance is given by N = 5.05 db.  

 
 

7. Conclusions 
 
A procedure for identifying the ND closed-order ARMA model has been designed 
and   presented. Further, a formulation of the 2D forgetting factor approach is 
established. Modelling healthcare data such as chromosome pictures with finite order 
ARMA models have been demonstrated. The prediction and estimation algorithm has 
been processed, and a steady state estimate of the signal has been easily reached.  
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Figure   2     T(m,n) 
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Figure   1 

S(m,n) [(i, j) : 0 i m 1;0 j] [(i, j) : i m;0 j n 1]= ≤ ≤ − ≤ = ≤ ≤ −U  
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Figure 3     steady state estimates 
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