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Abstract 
 

Consider a single server retrial queueing system with N-policy multiple vacation 
under non-pre-emptive priority service in which two types of customers arrive 
in a Poisson process with arrival rate λ1 for low priority customers and λ2 for high 
priority customers.The vacation rate follows an exponential distribution with 
parameter α.The service times follow an exponential distribution with parameters 
μ1 and μ2 for both types of customers. The concepts of retrial and N-policy 
multiple vacations are introduced for low priority customers only. Let K be the 
maximum number of waiting spaces for high priority customers in front of the 
service station. The high priorities customers will be governed by the Non-Pre-
emptive priority service.The access from orbit to the service facility are 
governed by the classical retrial policy. This model is solved by using Matrix 
geometric Technique.Numerical  study  have been done for Analysis of Mean 
number of low priority customers in the orbit (MNCO), Mean number of high 
priority customers in the queue(MPQL),Truncation level (OCUT),Probability of 
server free and Probabilities  of server busy with low, high priority customers and  
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server in vacation for various values of λ1 , λ2, μ1 , μ2,, N, α , σ and k  in elaborate 
manner and also various particular cases of  this model have been discussed. 
 
Mathematics Subject Classification: 60K25, 65K30 
 
Keywords: Single Server – Stochastic nature – Low priority – high priority –
Non-Pre-emptive priority service – N-policy multiple vacation - Matrix 
Geometric Method – Orbit – classical retrial policy. 
 
 
 
1. INTRODUCTION 

 
Queueing systems in which arriving customers who find all servers and 

waiting positions (if any) occupied may retry for service after a period of time are 
called Retrial queues([2],[3],[4],[7],[8],[9]),. Because of the complexity of the 
retrial queueing models, analytic results are generally difficult to obtain. There are 
a great number of numerical and approximations methods are available, in this 
paper we will place more emphasis on the solutions by Matrix geometric 
method ([12]).  

 
 

2. DESCRIPTION OF QUEUEING SYSTEM 
 

Consider a single server retrial queueing system with N-policy multiple 
vacation under non-pre-emptive priority([10]) service in which two types of 
customers arrive in a Poisson process with arrival rate λ1 for low priority 
customers and λ2 for high priority customers.The vacation rate follows an 
exponential distribution with parameter α.These customers are identified as 
primary calls. Further assume that the service times follow an exponential 
distribution with parameters μ1 and μ2 for both types of customers. The concepts 
of retrial and N-policy are introduced for low priority customers only. Let K be 
the maximum number of waiting spaces for high priority customers in front of the 
service station. 

 
Description of N-policy multiple vacations: 

           The concept of N-policy multiple vacations was first introduced by Yadin 
and Naor and later it was investigated by Lee, Srinivasan and Kella in queueing 
system who described it as “The service does not start unless there are N 
customers in the system except at the beginning.Once the server begins the 
service, the server continues the service until all customers are served after which 
the server must compulsorily go for a vacation. If the number of waiting 
customers in the system at any vacation completion is less than N then the server 
continues to be in vacation (multiple vacations). If the server returns from the 
vacation and finds atleast N customers in the system then he immediately starts to 
serve the waiting customers“. 
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         The above policy is modified and has been introduced for priority service in 
Retrial Queueing System. The N-policy multiple vacations for priority service 
in retrial queueing system is governed by the following principals 

1. The service does not start unless there are N customers in the low priority 
(orbit) or there is atleast one customer in the high priority except at the 
beginning. 

2. Once the service begins, as per non-pre-emptive priority service, the server 
continues the service until all customers are served both from high priority 
queue and orbit (low) after which he must compulsorily go for a vacation.  

3. If the number of waiting customers in the orbit at any vacation completion 
is less than N and if there is no customer  in the high priority queue then 
the server continues to be in vaction (multiple vacation)  

4. If the server returns from the vacation and finds atleast N customers in the 
orbit or atleast one customer in the high priority queue then he 
immediately starts to serve the waiting cuastomers as per the non-pre-
emptive priority service.         

This model is developed by using the above principal and numerical study is 
carried out in elaborate manner for various values of λ1 , λ2 , μ1  , μ2 ,N,α and K . 

 If the server is free at the time of a primary call (low/high) arrival, the 
arriving call begins to be served immediately by the server and customer leaves 
the system after service completion. Otherwise, if the server is busy then the low 
priority arriving customer goes to orbit and becomes a source of repeated calls. 
The pool of sources of repeated calls may be viewed as a sort of queue. Every 
such source produces a Poisson process of repeated calls with intensity σ. If an 
incoming repeated call (low) finds the server free, it is served and leaves the 
system after service, while the source which produced this repeated call 
disappears. If any one of the waiting spaces is occupied by the high priority 
customers then the low priority customers (as a primary call) can not enter into 
service station and goes to orbit. If the server is busy and there are some 
waiting spaces then the high priority customer can enter into the service station 
and waits for his service. If there are no waiting spaces then the high priority 
customers can not enter into the service station and will be lost for the system. 
Otherwise, the system state does not change.  

If there are no customers in the system after completion of service, the 
server must complulsorily go on vacation. At any time he may return from the 
vacation and starts service according to N-policy multiple vacation rules as 
defined above.  If the server is engaging with low priority customer and at that 
time the higher priority customer comes then the high priority customer will get 
service only after completion of the service of low priority customer who is  in 
service. This type of priority service is called the Non-pre-emptive priority 
service ([5],[6],[8]). This kind of priority service is followed in this paper. 
 
Retrial Policy: 

Most of the queueing system with repeated attempts assume that each 
customer in the retrial group seeks service independently of each other after a 
random time exponentially distributed with rate σ so that the probability of  
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repeated attempt during the interval   (t, t +∆t)  given that  there were n customers 
in orbit at time t  is nσ ∆t + O(∆t). This discipline for access for the server from 
the retrial group is called classical retrial rate policy.The input flow of primary 
calls (low and high), interval between repetitions,service times,interval between 
returns from vacation  are mutually independent.  

 
 

 
3. MATRIX GEOMETRIC METHODS 
     
 

Let  N(t) be  the random variable which represents the number of low 
priority customers in the orbit  at time  t  and  P(t) be the random variable which 
represents the number of high priority customers in the  queue (in front of the 
service station) at time t and S(t) represents the server state at time t.  The random 
process is described as{ < N(t) , P(t), S(t) >  / N(t)=0,1,2,3… ; P(t)=0,1,2,3…K ; 
S(t) =0,1,2,3}.If S(t)=0 then server is idle. If S(t)=1 or 2 then server busy with 
either low or high priority customer. If S(t)=3 then server is in vacation. 
The possible state spaces are         
 { (u , v , w) / u = 0,1,2,3…. ;  v = 0; w=0,1,2,3 }  U 
 { (u , v , w)/  u = 0,1,2,3…. ;  v =1,2,3…k; w=1,2,3}  
 
 
The infinitesimal generator matrix Q  is given below 
 

 
 
 
 
 
Q =    
 
 
 
 
 

 
 
 
Notations:  
#1    :   -(λ1+ λ2)           #2    :   -(λ1+ λ2+μ1)  #3   :  -(λ1+ λ2+μ2)  #4   :   -(λ1+ λ2+α)             
#5   :    -(λ1+μ1)            #6     :  -(λ1+μ2)          #7   :   -(λ1+ α)       #8      :  -(nσ+ λ1+ λ2)       
#9    :  -(Mσ+ λ1+ λ2)   #10   :     -(λ2+μ1)         #11  :   -(λ2+μ2)       #12   :   -(λ2+α)    
A00, An n-1, Ann, An n+1 are square matrices of order 3k+4     
 

A00  A0 O O O O    . .

   
                
            A10  A11 A0          O O O . .
  
 
             O  A21       A22            A0 O O . .
  
 
            O               O        A32          A33 A0 O . .
  
             . . . . . . .           . 
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  A00 = 
 
 
 
                 
 
 
 
Ann-1 = (aij)  where    aij = 0     for all i and j except i=1 and j=2    
                                   a12= nσ    n=1,2,3…. 
 
 

         
 
 
Ann = 
n=1,2,3..N-1          

 
 
 
 
 
  

        
 
 
Ann = 
n=N,N+1,..          

 
 
 
 
 
 
 
 

#1 λ1 λ2 0 0 0 0 0 0 0 ….... 0 0 0 
0 #2 0 μ1 λ2 0 0 0 0 0 ….... 0 0 0 
0   0 #3 μ2 0 λ2 0 0 0 0 ….... 0 0 0 
0   0 0 #1 0 0 λ2 0 0 0 ….... 0 0 0 
0   0 μ1 0 #2 0 0 λ2 0 0 ….... 0 0 0 
0     0     μ2     0 0 #3 0 0 λ2 0 ….. 0 0 0 
0 0 α 0 0 0 #4 0 0 λ2 ….. 0 0 0 
….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
0 0 0 0 0 0 0 0 0 0  #5 0 0 
0   0 0 0 0 0 0 0 0 0 ….... 0 #6 0 
0   0 0 0 0 0 0 0 0 0  ….... 0 0 #7

#8 λ1 λ2 0 0 0 0 0 0 0 ….. 0 0 0 
μ1 #2 0 0 λ2 0 0 0 0 0 ….. 0 0 0 
μ2 0 #3 0 0 λ2 0 0 0 0 ….. 0 0 0 
0 0 0 #1 0 0 λ2 0 0 0 ….. 0 0 0 
0 0 μ1 0 #2 0 0 λ2 0 0 ….. 0 0 0 
0 0 μ2 0 0 #3 0 0 λ2 0 ….. 0 0 0 
0 0 α 0 0 0 #4 0 0 λ2 ….. 0 0 0 

….. ….. ….. ….. ….. …… ….. …. ….. ….. ….. ….. ….. ….. 
0 0 0 0 0 0 0 0 0 0 ….. #5 0 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 #6 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 0 #7 

#8 λ1 λ2 0 0 0 0 0 0 0 ….. 0 0 0 
μ1 #2 0 0 λ2 0 0 0 0 0 ….. 0 0 0 
μ2 0 #3 0 0 λ2 0 0 0 0 ….. 0 0 0 
α 0 0 #4 0 0 λ2 0 0 0 ….. 0 0 0 
0 0 μ1 0 #2 0 0 λ2 0 0 ….. 0 0 0 
0 0 μ2 0 0 #3 0 0 λ2 0 ….. 0 0 0 
0 0 α 0 0 0 #4 0 0 λ2 ….. 0 0 0 

….. ….. ….. ….. ….. …… ….. …. ….. ….. ….. ….. ….. ….. 
0 0 0 0 0 0 0 0 0 0 ….. #5 0 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 #6 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 0 #7 
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Ann-1 = (bij)  where    bii    =   λ1   if  i=2,3,4…    (n=1,2,3,…) 
                                          =   0    if  i ≠ j 
If the capacity of the orbit is finite say M then  
 

         
 
 
 
AMM =          
 

 
 
 
 
 
 
 
 
Let x be a steady-state probability vector of Q and partitioned as 
x = ( x(0),x(1),x(2), ….) and  x  satisfies 
  xQ =  0 , xe=1.                                                                            (A)  
 Where  x(i) = ( Pi00  ,  Pi01 , Pi02 ,Pi03, Pi11 , Pi12 ,Pi13, Pi21 , Pi22 ,Pi23,…….. Pik1,  Pik2,Pik3 )    
                                                                                                           (i=0,1,2,3,…)  
 
 
4. DIRECT TRUNCATION METHOD 
 
          In this method one can truncate the system of equations in (A) for 
sufficiently large value of the number of customers in the orbit, say M. That is, the 
orbit size is restricted to M such that any arriving customer finding the orbit full is 
considered lost. The value of M can be chosen so that the loss probability is small. 
Due to the intrinsic nature of the system in (A), the only choice available for 
studying M is through algorithmic methods. While a number of approaches is 
available for  determining the cut-off point, M , The one that seems to perform 
well (w.r.t approximating the system performance measures) is to increase M until 
the largest individual change in the elements of x for successive values is less than 
Є a predetermined infinitesimal value. 
 
 
5. STABILITY CONDITION 
 
Theorem : 
 
The inequality L*( λ1/μ1 ) < 1 where L = F / ((1-x)(1-π3k-π3k+1) + xπ3k-2)(1+x/y) 
 

#9 λ1 λ2 0 0 0 0 0 0 0 ….. 0 0 0 
μ1 #10 0 0 λ2 0 0 0 0 0 ….. 0 0 0 
μ2 0 #11 0 0 λ2 0 0 0 0 ….. 0 0 0 
α 0 0 #12 0 0 λ2 0 0 0 ….. 0 0 0 
0 0 μ1 0 #10 0 0 λ2 0 0 ….. 0 0 0 
0 0 μ2 0 0 #11 0 0 λ2 0 ….. 0 0 0 
0 0 α 0 0 0 #12 0 0 λ2 ….. 0 0 0 

….. ….. ….. ….. ….. …… ….. …. ….. ….. ….. ….. ….. ….. 
0 0 0 0 0 0 0 0 0 0 ….. -μ1 0 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 -μ2 0 
0 0 0 0 0 0 0 0 0 0 ….. 0 0 -α 
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F =  (1+t+t2+…...+tk-1) , t=  λ2/(λ2+μ1), s= λ2/(λ2+α), x = λ2/μ2  and y= μ1/ μ2  is 
the necessary and sufficient condition  for the system to be stable.([1],[11]) 
Proof: 
 
Let Q be an infinitesimal generator matrix for the queueing system (without 
retrial) 
The stationary probability vector X statisfies  
                                     XQ = 0   and  Xe=1   ……….  (1) 
The Rate matrix R satisfies the equation                                 
                                    A0+RA1+R2A2  =0  ……………(2) 
The system is stable if sp(R)<1   
We know that the Matrix R satisfies sp(R)<1 if and only if                               
                                   ΠA0e <  ΠA2e  ………………...(3) 
where Π=( π0,π1,π2,….π3k,π3k+1,π3k+2)  satisfies 
 
                                   ΠA  = 0  ………………………..(4) 
                                   Πe   = 1   ……………………….(5) 
 where 
                                  A=A0+A1+A2  ………………….(6) 
 
 A0, A1, A2 are square matrices of order 3k+3 
  
A0 = λ1I   where I   is unit matrix   

 
 
 
 

 
A1 = 
 
 
 
 
 
 
 
 
 
 
A2 = 
 
 
 
 
 

#2 0 0 λ2 0 0 0 0 0 ….. 0 0 0 
0 #3 0 0 λ2 0 0 0 0 ….. 0 0 0 
0 0 #4 0 0 λ2 0 0 0 ….. 0 0 0 
0 μ1 0 #2 0 0 λ2 0 0 ….. 0 0 0 
0 μ2 0 0 #3 0 0 λ2 0 ….. 0 0 0 
0 α 0 0 0 #4 0 0 λ2 ….. 0 0 0 

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. 
0 0 0 0 0 0 0 0 0 ….. #5 0 0 
0 0 0 0 0 0 0 0 0 ….. 0 #6 0 
0 0 0 0 0 0 0 0 0 ….. 0 0 #7 

  μ1 0 0 0 0 0     0     0     0 ..… 0 0 0 
  μ2 0 0 0 0 0     0     0     0 ..… 0 0 0 
  α 0 0 0 0 0     0     0     0 ..… 0 0 0 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
… … … … … … … … … ..… … … … 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
  0 0 0 0 0 0     0     0     0 ..… 0 0 0 
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By substituting  A0 ,  A1 ,  A2  in  equations  (4) ,(5) and (6)  ,we get 
 
  π1 = xπ0                     π3 = tπ0                                π5 = sπ2=0        π2 = 0 

   π4 = x(π1+π3)            π6 = t2 π0                             π8 = s2π2=0 
  π7 = x(π4+π6)            π9 = t3π0                               π11 = s3π2=0 
  π10 = x(π7+π9) 
          .       .       . 
          .       .       .  
  π3k+1 = (λ2/μ2)π3k-2     π3k    = (λ2/μ1)π3k-3      π3k+2 = (λ2/α)π3k-1=0                            
  
From (5)    
                    π0+π1+ π2+π3+ π4+π5……+ π3k+ π3k+1+ π3k+2 =1 
                    π0+(π1+π4+π7+π10+…π3k-2)+ (π3+π6+π9+…π3k-3)=1- π3k+ π3k+1 
                    π0F = (1-x)[1-π3k-π3k+1] + xπ3k-2  
                    π0 = [(1-x)(1-π3k-π3k+1) + xπ3k-2] (F-1) 
where F= (1+t+t2+…...+tk-1) , t=  λ2/(λ2+μ1), s= λ2/(λ2+α), x = λ2/μ2 nd y= μ1/ μ2 
 
From (3) 
                    (λ1/μ1)  <  π0 (1+ x/y)                                      
                    (λ1/μ1)< [(1-x)(1-π3k-π3k+1) + xπ3k-2] (F-1)(1+x/y) 
                    L*(λ1/μ1) < 1 where L =F / ((1-x)(1-π3k-π3k+1) + xπ3k-2)(1+x/y)  
The inequality L * ( λ1/μ1 ) < 1   is also a sufficient condition for the retrial 
queueing system to be stable.  Let Qn be the number of customers in the orbit 
after departure nth customer from the service station. we first prove the embedded 
Markov chain  {Qn , n>=0} is erogdic if  L  *  (  λ1/μ1  ) <   1 . It is readily to see 
that  {Qn , n>=0} is irreducible and aperiodic. It remains to be proved that       
{Qn , n>0} is positive recurrent. The irreducible and aperiodic Markov chain    
{Qn , n>0} is positive recurrent if | ψi| <∞ for all i   and  lim i →∞ sup   ψi  <0  
where  
                      ψi   = E( Qn+1  -  Qn / Qn =i)     (i=0,1,2,3…)       
                      ψi    =   L * ( λ1/μ1 ) -  iσ / (λ1 + λ2+iσ) 
if   L * ( λ1/μ1 ) < 1 ,  then | ψi| <∞ for all i  and  lim i →∞ sup   ψi  <0. Therefore the 
embedded Markov chain{Qn , n>0}  is ergodic. 
 
 
6. ANALYSIS OF STEADY STATE PROBABILITIES 

   
We are applying Direct Truncation Method to find Steady state probability 
vector x. Let M denote the cut-off point or Truncation level. The steady state 
probability vector   x(M)  is now partitioned   as x(M)  = (x(0) , x(1), x(2) , …..x(M)) 
and    x(M)    satisfies  
                                                    x(M)  Q =  0 , x(M)  e=1.    
where x(i) = ( Pi00  ,  Pi01 , Pi02 ,Pi03, Pi11 , Pi12 ,Pi13, Pi21 , Pi22 ,Pi23,…….. Pik1,  Pik2,Pik3 )   
                                                                                                     (i=0,1,2,3,…M) 
The above system of equations is solved by Numerical method such as GAUSS-
JORDAN elementary transformation method. Since there is no clear cut choice  
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for M, we may start the iterative process by taking, say M=1 and increase it until 
the individual elements of  x do not change significantly. That is, if M* denotes 
the truncation point then    ||xM*(i)  -  xM*-1(i)  ||∞  <  ε  where ε is an infinitesimal 
quantity. 
 
 
7. SPECIAL CASES 
 

1. It becomes Single server retrial queueing system with single vacation 
exhaustive type service under non-pre-emptive priority service if  N=0  

2. This model becomes Single server retrial queueing system with non-pre-
emptive priority service if  N=0 and α→∞ ([5]) 

3. This model becomes Single Server Retrial queueing system and coincide 
with analytic solutions given by Falin[8] and Templeton[8] for various 
values  of λ1,  λ2 →0 , μ1, μ2 →∞ , α→∞, N=0,σ and K  

4. This model becomes Single Server Standard Queueing System  and 
coincide with standard results  if  λ2 →0 , μ2 →∞ , α→∞ ,N=0 and σ→∞  

 
 

8 SYSTEM PERFORMANCE MEASURES 
 

Numerical study has been dealt in very large scale to study the following 
measures. Here we define 
P(u,0,0)  =  Probability that there are u customers(low) in the orbit and  no   
                   Customers in the high priority queue and server is free .   
P(u,v,1)  =  Probability that there are u customers(low) in the orbit and  v>=0  
                   customers in the high priority queue and server is busy with low  
                   priority customer.     
P(u,v,2)  =  Probability that there are u customers(low) in the orbit and  v >=0  
                   customers in the high priority queue and server is busy with high  
                   priority customer. 
P(u,v,3) =   Probability that there are u customers(low) in the orbit and  v  
                   customers in  the high priority queue and server is in vacation. 
We can find various probabilities for various values of λ1, λ2 , μ1, μ2 ,α , σ, N and 
K and the following system measures can be easily study with these probabilities 
 
1. The probability mass function of  Server state 
             Let S(t) be the random variable which represents the server state at time t . 

   S  :              0idle                  1low                               2high                           3vacation        

         P  :          
0

( ,0,0)
i

p i
∞

=
∑    

0 0

( , ,1)
k

i j

p i j
∞

= =
∑∑    

0 0

( , , 2)
k

i j

p i j
∞

= =
∑∑   

0 0

( , ,3)
k

i j

p i j
∞

= =
∑∑  

2. The probability mass function of  number of customers(low) in the orbit 
Let X(t) be the random variable which represents the number of low 
priority  customers in the orbit.  
  No.of  low priority customers (orbit)            Probability 
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     i                  
3

0 1
( , , )

k

j l
p i j l

= =
∑∑ + p(i,0,0)  (i=0,1,2…)       

                               
3. The Probability mass function of number of high priority customers  
            (queue). 

Let P(t) be number of high priority customers in the queue at time t. P(t) 
takes the values 0,1,2,3….K.  

 No.of high priority customers (queue)         Probability   

             0                  
3

0 0
( ,0, )

i l
p i l

∞

= =
∑∑  

   j                      
3

0 1

( , , )
i l

p i j l
∞

= =
∑∑   (j=1,2…k)  

4. The Mean number of high priority customers in the queue 

  MNHP =  . 
3

1 0 1
* ( ( , , ))

k

j i l
j p i j l

∞

= = =
∑ ∑∑   

 
 

5. The Mean number of  low priority customers in the orbit 

      MNCO =       ( 
3

0 0 1
* ( ( , , )

k

i j l
i p i j l

∞

= = =
∑ ∑∑ +p(i,0,0) ) ) 

6. The probability that the orbiting customer (low) is blocked  

            Blocking Probability = 
3

1 0 1
( , , )

k

i j l
p i j l

∞

= = =
∑∑∑  

7. The probability that an arriving customer(low/high) enter into service  
             station immediately  

           PSI         =     
0

( ,0,0)
i

p i
∞

=
∑

 
 
 

9. NUMERICAL STUDY 
 

MNCO : Mean Number of Customers in the Orbit 
MPQL : Mean Number of high priority customers in front of the service station 
P0  : Probability that the server is idle 
P1  : Probability that the server is busy with low priority customers 
P2  : Probability that the server is busy with high priority customers 
P3                                       : Probability that the server is in vacation  
 
From the following tables we conclude that 

• Mean number of cutomers in the orbit decreses as σ increases. 
• Probabilities P1 and P2   are independent of σ. 
• As σ increases, P0 decreases and P3  increases 
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Table 1 : System Measures for λ1=10   λ2=5   μ1=20   μ2=25   N=5   K=2 

Sigma Ocut P0 P1 P2 P3 MNCO MPQL 
10 41 0.2258 0.5000 0.1942 0.0800 4.1543 0.1867 
20 38 0.1526 0.5000 0.1941 0.1532 3.3182 0.1911 
30 37 0.1142 0.5000 0.1941 0.1917 3.0612 0.1934 
40 36 0.0911 0.5000 0.1941 0.2148 2.9368 0.1948 
50 36 0.0757 0.5000 0.1941 0.2302 2.8636 0.1957 
60 36 0.0648 0.5000 0.1941 0.2412 2.8153 0.1964 
70 35 0.0566 0.5000 0.1940 0.2494 2.7810 0.1969 
80 35 0.0502 0.5000 0.1940 0.2557 2.7555 0.1973 
90 35 0.0451 0.5000 0.1940 0.2608 2.7357 0.1976 

100 35 0.0410 0.5000 0.1940 0.2650 2.7200 0.1978 
200 35 0.0214 0.5000 0.1940 0.2846 2.6497 0.1990 
300 35 0.0144 0.5000 0.1940 0.2915 2.6264 0.1994 
400 35 0.0109 0.5000 0.1940 0.2951 2.6148 0.1996 
500 35 0.0088 0.5000 0.1940 0.2972 2.6079 0.1997 
600 35 0.0073 0.5000 0.1940 0.2987 2.6033 0.1998 
700 35 0.0063 0.5000 0.1940 0.2997 2.6000 0.1999 
800 35 0.0055 0.5000 0.1940 0.3005 2.5975 0.1999 
900 35 0.0049 0.5000 0.1940 0.3011 2.5956 0.2000 

1000 35 0.0044 0.5000 0.1940 0.3016 2.5941 0.2000 
2000 35 0.0022 0.5000 0.1940 0.3038 2.5872 0.2001 
3000 35 0.0015 0.5000 0.1940 0.3045 2.5849 0.2002 
4000 35 0.0011 0.5000 0.1940 0.3049 2.5837 0.2002 
5000 35 0.0009 0.5000 0.1940 0.3051 2.5830 0.2002 
6000 35 0.0007 0.5000 0.1940 0.3053 2.5826 0.2002 
7000 35 0.0006 0.5000 0.1940 0.3054 2.5822 0.2002 
8000 35 0.0006 0.5000 0.1940 0.3054 2.5820 0.2002 
9000 35 0.0005 0.5000 0.1940 0.3055 2.5818 0.2002 

 
 
Table 2 : System Measures for  λ1=10   λ2=5   μ1=20   μ2=25   N=5   K=4 
 

Sigma Ocut P0 P1 P2 P3 MNCO MPQL 
10 43 0.2225 0.5000 0.1997 0.0778 4.2941 0.2092 
20 40 0.1506 0.5000 0.1997 0.1497 3.4302 0.2137 
30 39 0.1128 0.5000 0.1997 0.1875 3.1645 0.2161 
40 38 0.0900 0.5000 0.1997 0.2103 3.0360 0.2175 
50 38 0.0748 0.5000 0.1997 0.2255 2.9602 0.2184 
60 38 0.0640 0.5000 0.1997 0.2363 2.9103 0.2191 
70 38 0.0559 0.5000 0.1997 0.2444 2.8750 0.2196 
80 38 0.0496 0.5000 0.1997 0.2507 2.8486 0.2200 
90 37 0.0446 0.5000 0.1997 0.2557 2.8282 0.2203 

100 37 0.0405 0.5000 0.1997 0.2598 2.8119 0.2206 
200 37 0.0211 0.5000 0.1997 0.2792 2.7392 0.2218 
300 37 0.0143 0.5000 0.1997 0.2860 2.7152 0.2222 
400 37 0.0108 0.5000 0.1997 0.2895 2.7033 0.2224 
500 37 0.0087 0.5000 0.1997 0.2916 2.6961 0.2226 
600 37 0.0072 0.5000 0.1997 0.2930 2.6913 0.2227 
700 37 0.0062 0.5000 0.1997 0.2941 2.6879 0.2227 
800 37 0.0054 0.5000 0.1997 0.2948 2.6854 0.2228 
900 37 0.0049 0.5000 0.1997 0.2954 2.6834 0.2228 

1000 37 0.0044 0.5000 0.1997 0.2959 2.6818 0.2228 
2000 37 0.0022 0.5000 0.1997 0.2981 2.6747 0.2230 
3000 37 0.0015 0.5000 0.1997 0.2988 2.6723 0.2230 
4000 37 0.0011 0.5000 0.1997 0.2992 2.6711 0.2230 
5000 37 0.0009 0.5000 0.1997 0.2994 2.6704 0.2231 
6000 37 0.0007 0.5000 0.1997 0.2996 2.6699 0.2231 
7000 37 0.0006 0.5000 0.1997 0.2997 2.6696 0.2231 
8000 37 0.0006 0.5000 0.1997 0.2997 2.6693 0.2231 
9000 37 0.0005 0.5000 0.1997 0.2998 2.6691 0.2231 
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Table 3 : System Measures for λ1=10   λ2=5   μ1=20   μ2=25   N=5   K=6 

Sigma Ocut P0 P1 P2 P3 MNCO MPQL 
10 43 0.2224 0.5000 0.2000 0.0777 4.3029 0.2110 
20 40 0.1505 0.5000 0.2000 0.1495 3.4376 0.2155 
30 39 0.1127 0.5000 0.2000 0.1873 3.1715 0.2178 
40 39 0.0899 0.5000 0.2000 0.2101 3.0427 0.2193 
50 39 0.0747 0.5000 0.2000 0.2253 2.9669 0.2202 
60 39 0.0639 0.5000 0.2000 0.2361 2.9169 0.2209 
70 39 0.0558 0.5000 0.2000 0.2442 2.8815 0.2214 
80 39 0.0496 0.5000 0.2000 0.2504 2.8550 0.2218 
90 39 0.0446 0.5000 0.2000 0.2555 2.8346 0.2221 

100 39 0.0405 0.5000 0.2000 0.2595 2.8183 0.2223 
200 39 0.0211 0.5000 0.2000 0.2789 2.7455 0.2236 
300 39 0.0143 0.5000 0.2000 0.2857 2.7214 0.2240 
400 39 0.0108 0.5000 0.2000 0.2892 2.7095 0.2242 
500 39 0.0087 0.5000 0.2000 0.2914 2.7023 0.2243 
600 39 0.0072 0.5000 0.2000 0.2928 2.6975 0.2244 
700 39 0.0062 0.5000 0.2000 0.2938 2.6941 0.2245 
800 39 0.0054 0.5000 0.2000 0.2946 2.6915 0.2245 
900 39 0.0048 0.5000 0.2000 0.2952 2.6896 0.2246 

1000 39 0.0044 0.5000 0.2000 0.2956 2.6880 0.2246 
2000 39 0.0022 0.5000 0.2000 0.2978 2.6808 0.2247 
3000 39 0.0015 0.5000 0.2000 0.2986 2.6784 0.2248 
4000 39 0.0011 0.5000 0.2000 0.2989 2.6773 0.2248 
5000 39 0.0009 0.5000 0.2000 0.2991 2.6765 0.2248 
6000 39 0.0007 0.5000 0.2000 0.2993 2.6761 0.2248 
7000 39 0.0006 0.5000 0.2000 0.2994 2.6757 0.2248 
8000 39 0.0006 0.5000 0.2000 0.2995 2.6755 0.2248 
9000 39 0.0005 0.5000 0.2000 0.2995 2.6753 0.2248 

 
 
10. GRAPHICAL STUDY 
   
Fig 1. Mean No. of low priority customers in the orbit for λ1 = 10   λ2=5    μ1 =20   μ2=25   
           N=5   K=6    and σ  various from 10 to 90    

  
 
Fig 2. Mean No. of low priority customers in the orbit for λ1 = 10   λ2=5    μ1 =20   μ2=25   
           N=5   K=6    and σ  various from 100 to 900  
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Fig 3. Mean No. of low priority customers in the orbit for λ1 = 10   λ2=5    μ1 =20   
μ2=25  N=5   K=6    and σ  various from 1000 to 9000   

 
 
 
 11. CONCLUSIONS 

1. The Numerical study on single server retrial queueing system with           
N-policy multiple vacations under non pre-emptive priority service by 
Matrix Geometric Method have been done in elobarate manner for various 
values of  λ1 , λ2  , μ1, μ2 ,α,N,σ  

2. If N=0 then our results coincides with single server retrial queueing 
system with single vacations-exhaustive type service  under non pre-
emptive priority service 

3. The numerical results were obtained by us coincide with Analytic 
solutions of single Server Retrial Queueing System with  Non-pre-emptive 
priority service for various values of  λ1 , λ2  , μ1, μ2, σ , (α →∞  and N=0) 
and K is large  

4. From this numerical study,further we state that when retrial rate is high i.e 
σ>8000,  and (α →∞ and   N=0), these results coincide with standard 
Single server queueing system with Non- pre-emptive priority service  for 
various values of λ1 , λ2  , μ1, μ2  and K is large 

5. The numerical results were obtained by us coincide with Analytic 
solutions of single Server Retrial Queueing System (discussed by Falin 
and Templeton) for various values of  λ1 , ( λ2  → 0) , μ1, μ2→∞ ,  σ ,        
(α →∞ and  N=0) and K is large 

6. Graphical studies show the impact of retrial rate on length of orbit (low). 
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