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Abstract

Many physical phenomena in static field problems particularly in the electromag-
netic field and the incompressible potential flow field are described by elliptic partial
differential equations (pdes). Improved techniques using explicit group methods de-
rived from the standard and skewed (rotated) finite difference operators have been
developed over the last few years in solving the linear systems that arise from the
discretization of these elliptic pdes (Ali et al., 2004; Evans and Yousif, 1990; Othman
and Abdullah, 2000; Yousif and Evans, 1995). The convergence rates of these iter-
ative methods depend on the spectral properties of the coefficient matrices resulted
from these group discretization formulas. The formulation of suitable precondition-
ers which can improve the convergence rates of these iterative schemes are crucial
to the development of these new group methods. This paper is concerned with the
application of suitable preconditioning technique to a recently developed scheme,
the Modified Explicit Decoupled Group (MEDG) iterative method due to Ali and
Ng (2008), for solving the two dimensional elliptic pdes. Numerical experiments are
conducted on each developed non-preconditioned and preconditioned schemes for
comparison purposes. The results show the improvements in the convergence rate
and the efficiency of the newly formulated preconditioned iterative scheme.

Keywords: Preconditioning method, Modified Explicit Decoupled Group (MEDG)
method, Successive Over-Relaxation (SOR) method
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1 Introduction

Solving partial differential equations (pdes) are usually at the heart of most scientific and
engineering applications. The Explicit Decoupled Group (EDG) scheme was developed
by Abdullah [1] as a more efficient Poisson solver on rotated grids by using small fixed
size group strategy which was shown to be more economical computationally than the
Explicit Group (EG) scheme due to Yousif and Evans ([4], [12]). Othman and Abdullah
[8] subsequently modified the formulation of the EG method by altering the ordering
of grid points taken in the iterative process to come up with the modified four-point
EG where this method (MEG) was shown to be more superior in timings than both
the original methods. In a recent paper, another explicit group method was proposed,
namely the Modified Explicit Decoupled Group (MEDG) method ([2], [3]) as an addition
to this family of four-point explicit group methods in solving Poisson equation. This
method has been shown to be the fastest method among the four methods due to its
lowest computational complexity. Since the reliability and robustness of iterative methods
may now be improved by the use of preconditioning techniques, hence further efforts are
being taken to combine the MEDG method with appropriate preconditioners as a way
to further improve the performance of the method. A good choice of preconditioner can
have a crucial impact on the efficiency and robustness of the resulting preconditioned
iterative solver. Finding a good preconditioner inevitably combines a lot of intuition with
rigorous definitions. Several methods have been developed on the preconditioned iterative
methods for the last 15 years, but this quest is still going on ([6], [7], [11]). Saeed and
Ali [9] introduced the preconditioner that improves the convergence rate of the Explicit
Decoupled Group (EDG) and the numerical experiments yield very encouraging results.
This paper is concerned with the application of suitable preconditioning techniques to
the Modified Explicit Decoupled Group (MEDG) iterative method due to Ali and Ng
[3] for solving the elliptic partial differential equation. Preconditioning strategies which
improve the rate of convergence of these iterative methods are investigated. For a linear
system which is obtained from the four point MEDG finite difference approximation, the
I + S -type preconditioning matrix is employed in conjunction with the original system,
where S is obtained by taking the first upper diagonal groups of iteration matrix of the
original system. The paper is organised in six sections: Section 2 gives an overview of the
Modified Explicit Decoupled Group (MEDG) method. In Section 3, we briefly describe
the preconditioner (I + S). We formulate this preconditioner in block formulation to the
MEDG iterative method in Section 4. The Successive Over-Relaxation (SOR) was the
accelarator used in the iterative method. The numerical results are presented in Section
5 in order to show the efficiency of the preconditioned MEDG SOR method. Finally, the
concluding remarks are given in Section 6.
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2 Modified Explicit Decoupled Group SOR (MEDG

SOR)

Consider the following two dimensional Poisson equation

uxx + uyy = f(x, y), x, y ∈ Ω (1)

with a Dirichlet boundary condition on a unit square solution domain [0≤x, y≤1]. Let
Ω be discretized uniformly in both x and y directions with a mesh size h = 1/n where n
is a positive even integer. The solutions at the (n − 1)2 internal mesh points (x, y) can
be approximated by various finite difference schemes. By using the centered difference
equation, we will obtain the h-spaced standard five-point difference formula as follows:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = 2h2fi,j . (2)

By rotating the x-y axis clockwise 45o and applying the centered difference formula,
we will then achieve the following

√
2h − spaced rotated five-point difference formula

ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4ui,j = 2h2fi,j . (3)

The Modified Explicit Decoupled Group method is modification of the EDG method
described by considering the points at grid size of 2h = 2/n. The application of centered
difference equation on these 2h spaced points results in the following standard five-point
formula (with spacing 2h)

ui+2,j + ui−2,j + ui,j+2 + ui,j−2 − 4ui,j = 4h2fi,j . (4)

When the x − y axis is rotated clockwise 45o and the centered difference equation is
applied on these points, it will result in the following rotated five-point difference formula
(with spacing 2h)

ui+2,j+2 + ui−2,j−2 + ui−2,j+2 + ui+2,j−2 − 4ui,j = 8h2fi,j . (5)

Now by applying Eq. (5) to groups of four points as shown in Figure 1 and we produce
the following (4 × 4) system of equations

⎛
⎜⎜⎝

4 −1 0 0
−1 4 0 0
0 0 4 −1
0 0 −1 4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ui,j

ui+2,j−2

ui+2,j

ui,j+2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ui−2,j−2 + ui+2,j−2 + ui−2,j+2 − 8h2fi,j

ui,j+4 + ui+4,j + ui+4,j+4 − 8h2fi+2,j+2

ui,j−2 + ui+4,j−2 + ui+4,j+2 − 8h2fi+2,j

ui−2,j+4 + ui−2,j + ui+2,j+4 − 8h2fi,j+2

⎞
⎟⎟⎠

(6)
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Figure 1: Groups of four points with 2h spacing

which can be inverted and rewritten in explicit forms of a decoupled system of (2 × 2)
equations as :

(
ui,j

ui+2,j+2

)
=

1

15

(
4 1
1 4

) (
ui−2,j−2 + ui+2,j−2 + ui−2,j+2 − 8h2fi,j

ui,j+4 + ui+4,j + ui−4,j+4 − 8h2fi+2,j+2

)
(7)

and (
ui+2,j

ui,j+2

)
=

1

15

(
4 1
1 4

) (
ui,j−2 + ui+4,j−2 + ui−4,j+2 − 8h2fi+2,j

ui−2,j+4 + ui+2,j + ui+2,j+4 − 8h2fi,j+2

)
(8)

Similar to the original EDG method, the evaluation of Eq. (7) and Eq. (8) can be
performed independently. Figure 2 shows the discretization points of a unit square domain
with n=14 and the various types of points involved. It is obvious that the evaluation of
Eq. (7) involves only points of type • and Eq. (8) only points of type �. The points of
type • solved iteratively using Eq. (7) until convergence after which the points of type
� is computed directly once using the standard 2h spaced five-point formula of Eq. (4).
The remaining in-between points of type � are also computed directly once using the
rotated five-point difference formula of Eq. (3), and followed by points of type � using the
standard five-point difference formula of Eq. (2).

This will lead to the formation of a system of equations in the form Aũ = b̃ where:

A =

⎛
⎜⎜⎜⎜⎜⎝

R0 R1

R2 R0 R1

R2 R0
. . .

. . .
. . . R1

R2 R0

⎞
⎟⎟⎟⎟⎟⎠

(N−2)2

2
× (N−2)2

2

, R0 =

⎛
⎜⎜⎜⎝

R00 R01

R02 R00
. . .

. . .
. . . R01

R02 R00

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

,

R00 =

(
1 −1

4−1
4

1

)
, R01 =

(
0 0
−1

4
0

)
, R02 = RT

01,
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Figure 2: Types of discretized points in MEDG method for n=14

R1 =

⎛
⎜⎜⎜⎝

R01 R01

R01
. . .
. . . R01

R01

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

, R2 =

⎛
⎜⎜⎜⎝

R02

R02 R02

. . .
. . .

R02 R02

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

,

ũ =

⎛
⎜⎜⎜⎜⎜⎝

ũ1

ũ3
...

ũN−8

ũN−4

⎞
⎟⎟⎟⎟⎟⎠

(N−2)
2

, ũi =

⎛
⎜⎜⎜⎝

ũ2,i

ũ6,i
...

ũN−4,i

⎞
⎟⎟⎟⎠

(N−2)

for i = 2(2)N − 4,

ũi,j =

(
ui,j

ui+2,j+2

)
for i, j = 2(2)N − 4

b̃ =

⎛
⎜⎜⎜⎜⎜⎝

ṽ2

ṽ6
...

ṽN−8

ṽN−4

⎞
⎟⎟⎟⎟⎟⎠

(N−2)2

2

, ṽi =

⎛
⎜⎜⎜⎝

ṽ2,i

ṽ6,i
...

ṽN−4,i

⎞
⎟⎟⎟⎠

(N−2)

for i = 2(2)N − 4,

ṽi,j =

(
vi,j

vi+2,j+2

)
for i, j = 2(2)N − 4

For i = 2,
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ṽ2,i =

(
v2,i

v4,i+2

)
=

( −2h2f2,i + 1
4
u0,i−2 + 1

4
u4,i−2 + 1

4
u0,i+2

−2h2f4,i+2

)

ṽk,i =

(
vk,i

vk+2,i+2

)
=

( −2h2fk,i + 1
4
uk−2,i−2 + 1

4
uk+2,i−2

−2h2fk+2,i+2

)
for k = 6(2)N − 8

ṽN−4,i =

(
vN−4,i

vN−2,i+2

)
=

( −2h2fN−4,i + 1
4
uN−6,i−2 + 1

4
uN−2,i−2

−2h2fN−2,i+2 + 1
4
uN,i + 1

4
uN,i+4

)

For i = 6(2)N − 8,

ṽ2,i =

(
v2,i

v4,i+2

)
=

( −2h2f2,i + 1
4
u0,i−2 + 1

4
u0,i+2

−2h2f4,i+2

)

ṽk,i =

(
vk,i

vk+2,i+2

)
=

( −2h2fk,i

−2h2fk+2,i+2

)
for k = 6(2)N − 8

ṽN−4,i =

(
vN−4,i

vN−2,i+2

)
=

( −2h2fN−2,i

−2h2fN−2,i+2 + 1
4
uN,i + 1

4
uN,i+4

)

For i = N − 4,

ṽ2,i =

(
v2,i

v4,i+2

)
=

( −2h2f2,i + 1
4
u0,i−2 + 1

4
u0,i+2

−2h2f4,i+2 + 1
4
u2,i+4 + 1

4
u6,i+4

)

ṽk,i =

(
vk,i

vk+2,i+2

)
=

( −2h2fk,i

−2h2fk+2,i+2 + 1
4
uk,i+4 + 1

4
uk+4,i+4

)
for k = 6(2)N − 8

ṽN−4,i =

(
vN−4,i

vN−2,i+2

)
=

( −2h2fN−4,i

−2h2fN−2,i−2 + 1
4
uN−4,i+4 + 1

4
uN,i + 1

4
uN,i+4

)

The line with ui,j in (6) can be written as

R00ui,j + R01ui,j−4 + R01ui−4,j + R00ui−4,j−4 + R01ui+4,j + R11ui,j+4 + R11ui+4,j+4 = vi,j

By rewriting in the explicit form, we will get:

ui,j = −R−1
00 R01ui−4,j−4 − R−1

00 R01ui,j−4 − R−1
00 ui−4,j − R−1

00 R01ui+4,j

−R−1
00 R11ui,j+4 − R−1

00 R11ui+4,j+4 + R−1
00 vi,j

Since

R−1
00 =

4

15

(
4 1
1 4

)
,−R−1

00 R01 =
1

15

(
1 0
4 0

)
,−R−1

00 R02 =
1

15

(
0 4
0 1

)
,

The MEDG formula is hence written as the following:

ui,j =
1

15
(4F1 + F2), ui+2,j+2 =

1

15
(F1 + 4F2)
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where:

F1 = ui−2,j−2 + ui+2,j−2 + ui−2,j+2 − 8h2fi,j,
F2 = ui,j+4 + ui+4,j + ui+4,j+4 − 8h2fi+2,j+2

As can be seen, the matrix A is a block tridiagonal matrix. Therefore the SOR method
applied on this system will converge [10]. In order to obtain the formula of MEDG SOR
method, we first need to derive the formulas of MEDG Jacobi and MEDG Gauss Seidel
method respectively.

The iterative scheme for MEDG Jacobi method is given by

ui,j =
1

15
(4F1 + F2), ui+2,j+2 =

1

15
(F1 + 4F2)

where:

F1 = u
(k)
i−2,j−2 + u

(k)
i+2,j−2 + u

(k)
i−2,j+2 − 8h2fi,j,

F2 = u
(k)
i,j+4 + u

(k)
i+4,j + u

(k)
i+4,j+4 − 8h2fi+2,j+2

The iterative scheme for MEDG Gauss Seidel method is given by

ui,j =
1

15
(4F1 + F2), ui+2,j+2 =

1

15
(F1 + 4F2)

where:

F1 = u
(k+1)
i−2,j−2 + u

(k+1)
i+2,j−2 + u

(k+1)
i−2,j+2 − 8h2fi,j,

F2 = u
(k)
i,j+4 + u

(k)
i+4,j + u

(k)
i+4,j+4 − 8h2fi+2,j+2

(9)

Hence, the iterative scheme for MEDG SOR method is given by

u
(k+1)
i,j =

1

15
w(4F1 + F2) + (1 − w)u

(k)
i,j ,

u
(k+1)
i+2,j+2 =

1

15
w(F1 + 4F2) + (1 − w)u

(k)
i+2,j+2

where F1, F2 are shown in Eq. (9) .

3 Preconditioners

Consider the linear system

Aũ = b̃ (10)
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which is obtained by solving the Poisson equation using specific finite difference schemes.
When a preconditioner is applied to the linear system Eq. (31), a new system will be
obtained such that

PAũ = P b̃ (11)

The preconditioner P of Gunawardena et al.[5] eliminates the elements of the first upper
codiagonal of A where P = I + S, I is the identity matrix which has the same dimension
as A while S is the elements of the first upper diagonal of A,

S =

⎛
⎜⎜⎜⎜⎜⎝

0 −a12 0 · · · 0
0 0 −a23 . . . 0
...

...
... · · · ...

0 0 0 · · · −an−1,n

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

,

and the system become

(I + S)Aũ = (I + S)b̃

In the next section we formulate the block formulation of the above preconditioner to suit
the structure of the MEDG SOR iterative method.

4 Preconditioned Modified Explicit Decoupled Group

SOR (MEDG SOR)

For MEDG method, the matrix A, vectors ũ and b̃ are of equal definitions as in Section
(2). Since MEDG is a group method, S is obtained by taking the first upper diagonal
groups of R0 in Section (2) as the following:

S =

⎛
⎜⎜⎜⎝

s1

s1

. . .

s1

⎞
⎟⎟⎟⎠

(N−2)2

2
× (N−2)2

2

, s1 =

⎛
⎜⎜⎜⎝

0̃ −R01

0̃
. . .
. . . −R01

0̃

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

Therefore, the preconditioner, I + S matrix will become

I+S =

⎛
⎜⎜⎜⎝

s2

s2

. . .

s2

⎞
⎟⎟⎟⎠

(N−2)2

2
× (N−2)2

2

, s2 =

⎛
⎜⎜⎜⎝

I0 −R01

I0
. . .
. . . −R01

I0

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

HereI0 is a (2 × 2) identity matrix.

Now, obtain A by multiplying I + S with A.
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A = (I + S)A =

⎛
⎜⎜⎜⎝

s2

s2

. . .

s2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

R0 R1

R2 R0
. . .

. . .
. . . R1

R2 R0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

M1 R1

M2 M1
. . .

. . .
. . . R1

M2 M1

⎞
⎟⎟⎟⎠

(N−2)2

2
× (N−2)2

2

M1 = s2R0 =

⎛
⎜⎜⎜⎝

M01 M02

R02 M01
. . .

. . .
. . . M02

R02 R00

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

, M01 =

(
1 −1

4−1
4

15
16

)
,

M02 =

(
0 0
0 − 1

16

)
, M2 = s2R2 =

⎛
⎜⎜⎜⎝

M21 M22

R02 M21
. . .

. . .
. . . M22

R02 R02

⎞
⎟⎟⎟⎠

(N−2)×(N−2)

,

M21 =

(
0 −1

4

0 − 1
16

)
, M22 =

(
0 0
0 1

16

)

R00, R01 and R02 are defined earlier as in Section (2).

Therefore, we can rewrite the system Aũ = b̃ as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1 R1

M2 M1 R1

M2 M1 R1

. . .
. . .

. . .

M2 M1 R1

M2 M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ũ2

ũ6

ũ10
...

ũN−8

ũN−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s2ṽ2

s2ṽ6

s2ṽ10
...

s2ṽN−8

s2ṽN−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(12)

From Eq. (12),we will obtain

M1ũj + R1ũj+4 = s2ṽj for j = 2 (13)

M2ũj−4 + M1ũj + R1ũj+4 = s2ṽj for j = 6(2)N − 8 (14)
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M2ũj−4 + M1ũj = s2ṽj for j = N − 4 (15)

Now, from Eq. (13) we can get:

For i = 2,

ũi,j = M−1
01 ṽi,j − M−1

01 R01ṽi+4,j

−M−1
01 M02ũi+4,j − M−1

01 R01ũi,j+4 − M−1
01 R01ũi+4,j+4

(16)

For i = 6(2)N − 8,

ũi,j = M−1
01 ṽi,j − M−1

01 R01ṽi+4,j − M−1
01 R02ũi−4,j − M−1

01 M02ũi+4,j

−M−1
01 R01ũi,j+4 − M−1

01 R01ũi+4,j+4

(17)

For i = N − 4,

ũi,j = R−1
00 ṽi,j − R−1

00 R02ũi−4,j − R−1
00 R01ũi,j+4 (18)

The equation Eq. (16) can be written in matrix form as:

14

(
ui,j

ui+2,j+2

)
=

(
15 4
4 16

) (−2h2fi,j + 1
4
ui−2,j−2 + 1

4
ui−2,j+2 + 1

4
ui+2,j−2

−2h2fi+2,j+2

)
−

(−1 0
−4 0

)
(−2h2fi+4,j + 1

4
ui+2,j−2 + 1

4
ui+6,j−2

−2h2fi+6,j+2

)
−

(
0 −1

4

0 −1

) (
ui+4,j

ui+5,j+1

)
−

(−1 0
−4 0

) (
ui,j+4

ui+1,j+5

)

−
(−1 0
−4 0

) (
ui+4,j+4

ui+5,j+5

)

(19)

From equation Eq. (19), we will obtain a scheme as the following:

14ui,j =
15

4
F1 +

1

4
F2 , 14ui+2,j+2 = F1 + F2 (20)

where
F1 = ui−2,j−2 + ui−2,j+2 + ui+2,j−2 − 8h2fi,j

F2 = ui+2,j−2 + ui+6,j−2 + ui+5,j+1 + 4ui,j+4 + 4ui+4,j+4 − 32h2fi+2,j+2 − 8h2fi+4,j
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Using the same manner as above, from Eq. (17) we can obtain a scheme as the follow-
ing:

14ui,j =
15

4
F1 +

1

4
F2 +

15

4
ui−3,j+1, 14ui+2,j+2 = F1 + F2 + ui−3,j+1 (21)

where F1 and F2 are same expression as Eq. (19).
Also from Eq. (18), we can obtain a scheme as the following:

15ui,j = 4F1 + C1 , 15ui+2,j+2 = F1 + C2 (22)

where:

C1 = 4ui−3,j+1 + ui,j+4 − 8h2fi+2,j+2 , C2 = ui−3,j+1 + 4ui,j+4 − 32h2fi+2,j+2

and F1 is same expression as Eq. (19).

We use the same way as above and from the Eq. (14) to get a formula as the following:

For i = 2,

14ui,j =
15

4
F1 +

1

4
F2 +

7

2
ui+1,j−3 − 1

4
ui+5,j−3,

14ui+2,j+2 = F1 + F2 − ui+5,j−3

(23)

For i = 6(2)N-8,

14ui,j =
15

4
F1 +

1

4
F2 +

15

4
(ui−3,j−3 + ui−3,j+1) +

1

4
(16ui+1,j−3 − ui+5,j−3),

14ui+2,j+2 = F1 + F2 + ui−3,j−3 + ui−3,j+1 − ui+5,j−3 + 2ui+1,j−3

(24)

For i = N-4,

15ui,j = 4F1 + C1 + 4ui−3,j−3 +
17

4
ui+1,j−3,

15ui+2,j+2 = F1 + C2 + ui−3,j−3 + 2ui+1,j−3

(25)

where F1&F2 are same expressions as Eq. (20) and C1&C2 are same expressions as
Eq. (22).

Also from the Eq. (15) we can get a formula as the following:

For i = 2,
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14ui,j =
15

4
F1 +

1

4
F2 +

7

2
ui+1,j−3 − 1

4
ui+5,j−3 − ui,j+4 − ui+4,j+4

14ui+2,j+2 = F1 + F2 − 4(ui,j+4 + ui+4,j+4) − ui+5,j−3

(26)

For i=6(2)N-8,

14ui,j =
15

4
F1 +

1

4
F2 +

15

4
(ui−3,j−3 + ui−3,j+1) − (ui,j+4 + ui+4,j+4)

−1

4
ui+5,j−3 + 4ui+1,j−3,

14ui+2,j+2 = F1 + F2 − 4(ui,j+4 + ui+4,j+4) + 2ui+1,j−3 + ui−3,j−3

+ui−3,j+1 − ui+5,j−3

(27)

For i = N-4,

15ui,j = 4F1 + C1 +
1

4
(16ui−3,j−3 + 17ui+1,j−3) − ui,j+4,

15ui+2,j+2 = F1 + C2 − 4ui,j+4 + ui−3,j−3 + 2ui+1,j−3

(28)

where F1&F2 are same expressions as Eq. (20) and C1&C2 are same expression as Eq. (22).

Finally, we have nine iterative cases for the preconditioned MEDG method and the
difference equations can be transformed into the MEDG SOR schemes as:

For i = 2, 3(2)N − 8&N − 4, j = 2

14u
(k+1)
i,j = w[

15

4
F1 +

1

4
F ] + 14(1 − w)u

(k)
i,j ,

14u
(k+1)
i+2,j+2 = w(F1 + F2) + 14(1 − w)u

(k)
i+2,j+2

14u
(k+1)
i,j = w[

15

4
F1 +

1

4
F2 +

15

4
ui−3,j+1)] + 14(1 − w)u

(k)
i,j ,

14u
(k+1)
i+2,j+2 = w(F1 + F2 + ui−3,j+1) + 14(1 − w)u

(k)
i+2,j+2

15u
(k+1)
i,j = w(4F1 + C1) + 15(1 − w)u

(k)
i,j ,

15u
(k+1)
i+2,j+2 = w(F1 + C2) + 15(1 − w)u

(k)
i+2,j+2

Similarly, for i = 2, 6(2) N-8& N-4, j = 6(2) N-8
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14u
(k+1)
i,j = w(

15

4
F1 +

1

4
F2 +

7

2
ui+1,j−3 − 1

4
ui+5,j−3) + 14(1 − w)u

(k)
i,j ,

14u
(k+1)
i+2,j+2 = w(F1 + F2 − ui+5,j−3) + 14(1 − w)u

(k)
i+2,j+2

14u
(k+1)
i,j = w[

15

4
F1 +

1

4
F2 +

15

4
(ui−3,j−3 + ui−3,j+1) +

1

4
(16ui+1,j−3 − ui+5,j−3)],

+14(1 − w)u
(k)
i,j

14u
(k+1)
i+2,j+2 = w(F1 + F2 + ui−3,j−3 + ui−3,j+1 − ui+5,j−3 + 2ui+1,j−3) + 14(1 − w)u

(k)
i+2,j+2

15u
(k+1)
i,j = w[4F1 + C1 + 4ui−3,j−3 +

17

4
ui+1,j−3] + 15(1 − w)u

(k)
i,j ,

15u
(k+1)
i+2,j+2 = w(F1 + C2 + ui−3,j−3 + 2ui+1,j−3) + 15(1 − w)u

(k)
i+2,j+2

And for i = 2, 6(2) N-8 & N-4, j =N-4

14u
(k+1)
i,j = w(

15

4
F1 +

1

4
F2 +

7

2
ui+1,j−3 − 1

4
ui+5,j−3 − ui,j+4 − ui+4,j+4) + 14(1 − w)u

(k)
i,j ,

14u
(k+1)
i+2,j+2 = w[F1 + F2 − 4(ui,j+4 + ui+4,j+4) − ui+5,j−3] + 14(1 − w)u

(k)
i+2,j+2

14u
(k+1)
i,j = w[

15

4
F1 +

1

4
F2 +

15

4
(ui−3,j−3 + ui−3,j+1) − (ui,j+4 + ui+4,j+4) − 1

4
ui+5,j−3 + 4ui+1,j−3]

+14(1 − w)u
(k)
i,j ,

14u
(k+1)
i+2,j+2 = w[F1 + F2 − 4(ui,j+4 + ui+4,j+4) + 2ui+1,j−3 + ui−3,j−3 + ui−3,j+1 − ui+5,j−3]

+14(1 − w)u
(k)
i+2,j+2

15u
(k+1)
i,j = w[4F1 + C1 +

1

4
(16ui−3,j−3 + 17ui+1,j−3) − ui,j+4] + 15(1 − w)u

(k)
i,j ,

15u
(k+1)
i+2,j+2 = w[F1 + C2 − 4ui,j+4 + ui−3,j−3 + 2ui+1,j−3] + 15(1 − w)u

(k)
i+2,j+2

where:

F1 = ui−2,j−2 + ui−2,j+2 + ui+2,j−2 − 8h2fi,j ,

F2 = ui+2,j−2 + ui+6,j−2 + ui+5,j+1 + 4ui,j+4 + 4ui+4,j+4 − 32h2fi+2,j+2 − 8h2fi+4,j

And

C1 = 4ui−3,j+1 + ui,j+4 − 8h2fi+2,j+2 , C2 = ui−3,j+1 + 4ui,j+4 − 32h2fi+2,j+2 .

Notice that the preconditioned formulas above are more complicated in terms of for-
mulation but the effectiveness of this preconditioned method will be shown in the next
section.
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5 Numerical Experimentation and Results

In order to confirm the superiority of the preconditioned MEDG SOR iterative formula
against non-preconditioned MEDG SOR iterative formula, experiments were carried out
on the following model problem

∂2u

∂x2
+

∂2u

∂y2
= (x2 + y2)exy, (x, y) ∈ Ω = [0, 1] × [0, 1] (29)

with Dirichlet boundary conditions satisfying the exact solution u(x, y) = exy, (x, y) ∈
∂Ω, ∂Ω is the boundary of Ω. The theoretical optimum relaxation factor ω0 for imple-
menting the group SOR iterative scheme can be computed from the formula

ω0 =
2

1 +
√

1 − ρ2(B)
(30)

where ρ(B) is the spectral radius of the group Jacobian iterative matrix which can be
estimated for the MEDG method as ρ(B) ≈ 1 − 4

√
2π2h2 [5]. The theoretical number of

iteration to converge with the error tolerance tolerance ε can then be estimated as

k0 ≈ ln ε

ln(ω0 − 1)
(31)

From the boundary conditions given, we have a square solution domain. The values of
u are calculated using different mesh sizes, 42, 74, 114,186 and 242. The value of tolerance
is set to be ε = 5× 10−6. The computer processing unit is Intel(R) Core(TM) 2Duo with
memory of 3Gb and the software used to implement and generate the results is Developer
C++ Version 4.9.9.2. Table 1 shows a comparison of the results for the preconditioned
system and non-preconditioned system. The results show the corresponding number of
iterations (k), value of optimum w obtained, and the maximum error (e).

From Table 1 above, it is shown that the preconditioner has succeeded in reducing the
number of iterations. To illustrate this further, Figure 3 shows the comparison between the
unpreconditioned and preconditioned methods. The execution time for the preconditioned
system has been significantly reduced. The timings obtained as shown in Table 1 show
that the execution times of the preconditioned MEDG SOR is only about 40% of the
original MEDG SOR.

The convergence of the iteration methods relies on the spectral radius, which is de-
fined as the largest of the moduli of the eigenvalues of the iteration matrix. It is stated
and proven that a linear system with smaller value of spectral radius will have better
convergence rate. Thus, the spectral radius of the coefficient matrix of the original sys-
tem and the preconditioned system will be compared in order to justify the performance
and suitability of the preconditioner. Since there are no special theoretical formulas that
can be used to determine the spectral radiuses of the preconditioned matrices, therefore,
we use Matlab software to estimate the values of the spectral radius. Table 2 shows a
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Table 1: Comparison of the execution times, number of iterations and over relaxation
parameter for MEDG SOR method with and without preconditioner

System without preconditioner System with preconditioner
N

w k t e w k t e
42 1.651 24 0 5.00E-06 1.544 19 0 3.47E-06
74 1.785 35 0.016 4.57E-06 1.611 32 0.007 3.09E-06
114 1.880 51 0.034 2.08E-06 1.639 43 0.015 3.55E-06
186 1.908 81 0.064 4.80E-06 1.684 59 0.025 4.24E-06
242 1.961 114 0.146 3.73E-06 1.691 84 0.061 2.18E-06
t is the execution time of the computer with corresponding w in seconds(s).

Table 2: Comparison of spectral radius between the original and the preconditioned linear
systems

N Original linear system Preconditioned linear system
42 0.6286 0.4501
74 0.8442 0.5372
114 0.9213 0.6113
186 0.9412 0.6807
242 0.9601 0.7922

comparison of the spectral radius between the original and the preconditioned systems.
Clearly it can be seen that the spectral radius of the preconditioned system is smaller
compared to the original system, thus justifying our findings.
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Figure 3: Comparison of the number of iterations(k)between the preconditioned and
original systems for the MEDG SOR

6 Conclusions

In this work, we present the formulation of the preconditioner (I +S) in block formulation
for the MEDG SOR iterative method. We discover that the resulted preconditioned
system has complicated terms in its formulation, nevertheless, this preconditioned schemes
have shown improvements in the number of iterations and the execution time. Hence, we
conclude that the proposed preconditioner is suitable to be implemented on the MEDG
SOR method and is able to accelerate the rate of convergence of this method.
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