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Abstract

In this article, we use an efficient analytical method called homotopy
analysis method (HAM) to derive an approximate solution of nonlinear
ion sound waves equation. Actually, we solved Korteweg-de Vries equa-
tion arises in a one-dimensional macroscopic plasma model describing
the weakly nonlinear evolution of ion sound speed by the HAM. Unlike
the perturbation method, the HAM does not require the addition of a
small physically parameter to the differential equation. It is applica-
ble to strongly and weakly nonlinear problems. Moreover, the HAM
involves an auxiliary parameter, which renders the convergence param-
eter of series solutions controllable, and increases the convergence, and
increases the convergence significantly. This article depicts that the
HAM is an efficient and powerful method for solving nonlinear differen-
tial equations. Its performance is considerable and the solution of the
equation is the same as the numerical methods solution.
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1 Introduction

Modeling of natural phenomena in most sciences yields nonlinear differential
equations the exact solutions of which are usually rare. Therefore, analytical
methods are strongly needed. For instance, one analytical method, called
perturbation, involves creating a small physically parameter in the problem,
however, finding this parameter is impossible in most cases [1, 2|. Generally
speaking, one simple solution for controlling convergence and increasing it does
not exist in all analytical methods.

In 1992, Liao [3] presented Homotopy Analysis Method (HAM) based on
fundamental concept of homotopy in topology [4-9]. In this method, we do not
need to apply the small parameter and unlike all other analytic techniques,
the HAM provides us with a simple way to adjust and control the convergence
region of approximate series solutions. HAM has been successfully applied to
solve many types of nonlinear problems [10-14].

In this work, the basic idea of HAM is described, and then we apply it to the
nonlinear ion sound waves equation. In [15,16] the authors use the Korteweg-
de Vries equations and show how this equation arises in a one-dimensional
macroscopic plasma model describing the weakly nonlinear evolution of ion
sound speed. The importance of this equation in plasma physics is mentioned
in Section 2.

The paper is organized as follows: In Section 2 we briefly describe the
Korteweg-de Vries equation and Historically show the application and impor-
tance of it in plasma physics. Basic Idea of HAM is introduced in Section
3. In Section 4, using HAM, we propose a suitable formulation of nonlinear
ion sound waves equation for HAM and find a solution which has a perfor-
mance like numerical methods. In Section 5 we conclude the method and the
proposed solution.

2 Ton Sound Wave Model

Two of the most important properties characteristic of a plasma are nonlinear-
ity and dispersion. We begin in this section by discussing a classic nonlinear
partial differential equation, known as the Korteweg-de Vries equation, which
aries in a variety of physical situation, including problems relevant to plasma
physics. The Korteweg-de Vries equation is given by
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ta UL 45— =0, (1)

where ¢ and 7 are independent variables and a and b are real, nonzero con-
stants. Equation (1) is nonlinear through the convective term U %—(g, and dis-
persive through the term %‘%{. Historically, Equation (1) was first derived by
Korteweg and de Vries [17] in relation to the problem of long surface waves in
water in a channel of constant depth. Subsequently, Gardner and Morikawa
[18] derived Equation (1) from a cold-plasma hydromagnetic model describing
the long-time behavior of disturbances propagating perpendicular to a mag-
netic field with velocity near the Alfvén velocity. As demonstrated by Kruskal
and Zabusky [19-21], Equation (1) can also describe one-dimensional acoustic
waves in anharmonic crystals. Moreover, as a further example from plasma
physics, Washimi and Taniuti [22] have shown that Equation (1) gives a weakly
nonlinear description of one-dimensional ion sound wave disturbances traveling
through near the ion sound speed. In view of these many diverse applications
of the Korteweg-de Vries equation, it is apparent that some generalizations are
in order. In this regard, Su and Gardner [23] have shown that Equation (1)
arises in a broad class of weakly nonlinear dispersive systems, just as Burg-
ers’equation [24] a broad class of weakly nonlinear dissipative systems.

For present purposes, it is sufficient to derive the Korteweg-de Vries equa-
tion for one specific problem of interest in plasma physics, and keep in mind
the many applications [23] of Equation (1). In the rest of this section we show
in detail how Equation (1) arises in a one-dimensional macroscopic plasma
model describing the weakly nonlinear evolution of ion sound speed.

We now derive the Korteweg-de Vries equation for the case of ion sound
wave disturbance moving with Mach number (defined relative to the ion sound
speed) slightly greater than unity in a uniform, magnetic field-free, plasma
background. The ions are assumed cold and nondrifting relative to the elec-
trons (T; < T.), and a one-dimensional macroscopic description is used. More-
over, electron interia effects are neglected (M, — 0) and the isothermal equa-
tion of state, P. = n.kgT, (T, = const), is adopted for the electrons. We then
find

Oze.a_q)_@.ane’ (2)
ox’ Te ox’
where —e is the charge on the electron, n.(z’,t') is the electron density, and
®(2',t') is the electrostatic potential (F = —0®/0z"). Equation (2) may be
integrated to give n, = ngexp(e®/kpT,), where ny is the uniform background
electron density. Poisson’s equation becomes

0*® /0" = dmenolexp(e®/kpT.)] — n; (3)



1186 Ahmad Doosthoseini et al

For the ions, we have

ani 87’LZ * Uy

ot’ + or 0, (4)
ov; dv; e 0P
G il ik (5)

where n;(2/,t') is the ion density, v;(2’,¢') the ion mean velocity, and e and
m; the ion charge and mass, respectively. It is convenient to introduce the
dimensionless quantities (z,t, ¢, n,v) where

l,/

(kpT./4mnge?)1/2’

Tr =

t=t/(h)1/2,

— ed
¢ - kT’

=
ng’

= Vi
U= TepTe/mii7?

Equations (3)-(5) may then be written in the dimensionless form

on Odn-v)
% s 0 (6)
v ov) 09
at T o @)
o2
%ze‘z’—n (8)

where n is the ion density, v is the ion velocity, and ¢ is the electrostatic po-
tential. For a travelling-wave solution, we assume the n, v and ¢ are functions
of ( :=x — M -t, where M is the mach number. The appropriate boundary
conditions for a solitary-wave solution are:

(n— 1

v—0
¢»—0
n—0"’
v —0

¢ —0

|| = 00 ==

\



Explicit analytic solution 1187

where a dash denotes differentiation with respect to (.
Equations (6) and (7) may be integrated once to give:

M
M —wv
where we have used n — 1, v — 0 and ¢ — 0 as |(| — oo. Substitution of
Equation (10) into Equation (8) gives:

(M=o = M2, (10)

n =

”—e‘ﬁ——M;\/i?qb. (11)

One more integration gives:

1
—¢? = —V(p) = + M/ M2 —2-¢— (M?+1) (12)

2
where we have used ¢ — 0 and ¢’ — 0 as || — oo. Although Equation

0.4
|
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Figure 1: v(¢), as defined by (12), for M = 1.2 so that a = 0.5244

(12) does not have an analytic solution, we can deduce some properties of the
solution by considering the graph of V' as a function of ¢. (Figure 1 shows the
graph of V(¢)) when M = 1.2. Notice that curve terminates at ¢ = 22 = 0.72

where V(242) = 0.3856.)

We observe that V(0) = 0,V’(0) = 0 and V”(MTZ) = —1 + M2 so that
V7(0) < 0 provided M > 1. Thus, provided M > 1 and V(MTQ) >0,V(a)=0
with a somewhere in the interval 0 < a < MT2 But V( 2) > 0 implies that
M < M., where M,, .. is the root of V(MTZ) =0, i.e.

M2

ez —M?*—-1=0 (13)

Equation (13) gives M., = 1.585 (to 3D). The condition V(a) = 0 can be
rearranged to give:
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(14)
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Figure 2: a, as a function of M as computed from (14)

When M =1, a=0. When M = M,,40,0 = % = 1.256 (to 3D). (Figure
2 shows a as a function of M, for 1 < M < M,,... Notice that the curve
terminates at M = M,,,,). It follows that, if 1 < M < M., (12) has a
solitary-wave solution of amplitude a, where a and M are related by Equation
(14). Without loss of generality we can take the the crest of the wave to be
located at ¢ = 0 so that ¢(0) = a and then the solitary wave is symmetric
about ¢ = 0. (As an example, Figure 3 shows the graph of ¢({) when M = 1.2.
This was plotted by solving Equation (12) numerically).

V(o)

04
0.3}
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0.1 /
0. I i i
5, 02 0.4 0.6 08 1.

Figure 3: ¢(¢) for M = 1.2 so that a = 0.5244 (Numerical computation)
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3 Basic idea of HAM

Let us consider the following differential equation:

Nu(7)] =0, (15)

where N is a nonlinear operator, 7 denotes in dependent variable, u(7) is an
unknown function that is the solution of the equation. We define the function

lim o(7;p) = uo(7), (16)

p—0

where, p € [0,1] and ug(7) is the initial guess which satisfies the initial or
boundary condition and is

lim o(7;p) = u(r). (17)

By means of generalizing the traditional homotopy method, Liao [3] con-
structs the so-called zero-order deformation equation:

(1 =p) - Lle(7;p) = uo(7)] = p- h- H(7) - Np(7;p)], (18)

where A is the auxiliary parameter which increases the results convergence,
H(T) # 0 is an auxiliary function and L is an auxiliary linear operator, p
increases from 0 to 1, the solution ¢(7;p) changes between the initial guess
uo(7;p) and solution u(7). Expanding ¢(7;p) in Taylor series with respect to
p, we have:

P(T:p) = uo(T) + Y wp(r) - p", (19)
where
nlr) = - AT (20)

if the auxiliary linear operator, the initial guess, the auxiliary parameter A,
and the auxiliary function are so properly chosen, the series Equation (19)
converges at p = 1, and then we have:

u(r) = up(r) + Y (1), (21)

which must be one of the solutions of the original nonlinear equation, as proved
by Liao [7]. It is clear that if the auxiliary parameter is & = —1 and auxiliary
function is determined to be H(7) = 1, Equation (18) will be:
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(1 =p) - Llp(7;p) — uo(7)] +p - Np(7;p)] = 0. (22)
this statement is commonly used in HPM procedure. Indeed, in HPM we solve
the nonlinear differential equation by separating every Taylor expansion term.

Now we define the vector of @, as follows w,, = {71, Uo,. .., Wn}.

According to the definition Equation (20), the governing equation and the
corresponding initial condition of w,,(7) can be deduced from zero-order defor-
mation Equation (18). Differentiating Equation (18) for m-times with respect
to the embedding parameter p and setting p = 0 and finally dividing by m!, we
will have the so-called m-th order deformation equation in the following from

L[t (7) = 2y - U1 (7)] = p- - H(T) » Ry (W 1), (23)

where
(T = oty g P 21

and
{0 02! o

So by applying inverse linear operator to both sides of the linear equation,
Equation (23), we can easily solve the equation and compute the generation
constant by applying the initial or boundary condition.

4 The problem as formulated for the HAM

¢(0) =a, ¢'(0)=0, ¢(c0)=0 (26)
We choose the initial approximation.

$o(Q) =a- e Jocosou (27)

and the linear operator for equation (11)

0%¢(¢, q)
(G = : 28
el = 25 29
We change equations Equation (11) and Equation (28) to nonlinear form:
M
N[p(¢.i)] = ¢"(¢) — e + (29)
M? —2-¢(()

assuming H(7) = 1, we use above definition to construct the zero-order
deformation equations.
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(1=q) - £[o(¢;q) — ¢o(Q)] = ghN[p(C; q)] (30)
Obviously it is observed that:

q=0= ¢(¢;0) = do(C) (31)

and:

q=1= (1) =9¢(() (32)

Differentiating the zero-order deformation Equation (30) m-times with re-
spect to ¢, we have:

Upm — T Pm—1] = ARy (Pm—1) (33)
where
Ry, = Ry, + Ry, + Ry (34)
In (33) for calculating R,,, we expand functions e and m and use
four terms of their Taylor series. In (34) R,,,, R, and R,,, are as follow:
1 82qu—l
R, = 35
T 1) B (35)
and
1 m—1 1 m—1 k
Ry =0+ dmoa 45 Y bmok+ 5 ) Omork ) & X ey (36)
k=0 k=0 p=0
and

m—1 m—1 k
(bmfl 3 5
Rm3 =0+ WE + WE Z ¢k¢m—1—k + WL Z ¢m—1—k Z¢p X gbk—p (37)
k=0 k=0 p=0
and
0 m>1
Tm = { 1 m>1 (38)

From Equation (27) and Equation (34), we now successively obtain the u(()
and The Equation (33) is linear and thus can be easily solved, especially by
means of symbolic computation software such as Mathematica, Maple, MAT-
LAB and so on. We used 10 terms in evaluating the approximate solution.
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Figure 4: h-curve of ez

Note that this series contains the auxiliary parameter A, which influence
its convergence region and rate. We should therefore focus on the choice of i
by plotting of A-curve. Figure 4 shows the h-curve of 8;22 .

We should select optimal A from the region in which the diagram is quite
horizontal. Horizontal region is the optimal A region. Regarding Figure 4
optimal A equals 0.14365176. In this article we have obtained the values of
u by applying HAM remarkable method as well as by numerical method and
you will see the consequences of these methods in Figure 5. This diagram
apparently shows that quite analytic method of HAM is so close to numerical
solution with great exactness which is a token of its high accuracy.

0.6

05 [ ™

0.4

0.3

0.2

0.1

) S
0 2 =g & 8 )

Figure 5: Comparison between HAM and Numerical Method
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5 Conclusion

In this paper, we utilized the powerful method of homotopy analysis to ob-
tain the nonlinear ion sound waves equation solution. We achieved a very
good approximation with the numerical solution of the considered problem.
In addition, this technique is algorithmic and it is easy to implementation by
symbolic computation software, such as Maple and Mathematica. Different
from all other analytic techniques, it provides us with a simple way to adjust
and control the convergence region of approximate series solutions. Unlike
perturbation methods, the HAM does not need any small parameter. It shows
that the HAM is a very efficient method. We sincerely hope this method can
be applied in a wider range.

Acknowledgment
The Authors would like to thank ISSL’s members for technical discussion and
invaluable comments.

References

1] N. Ali Hasan, Introduction to Perturbation Techniques, John Wiley
Sons, New York, 1981.

2] N. Ali Hasan, Problems in Perturbation, John Wiley Sons, 1985.

3] S.J. Liao, The proposed homotopy analysis technique for the solution of
nonlinear problems, Ph.D. Thesis, ShanghaiJiao TongUniversity, 1992.

4] S.J. Liao, An approximate solution technique not depending on small
parameters: A special example, Int. J. Nonlinear Mech. 30 (1995) 371-
380.

5] S.J. Liao, A kind of approximate solution technique which does not

depend upon small parameters-II An application in fluid mechanics,
Int. J. Nonlinear Mech. 32 (5) (1997) 815.

6] S.J. Liao, An explicit, totally analytic approximate solution of Blasiuse’
viscouse flow problems, Int. J. Nonlinear Mech. 34 (4) (1999) 759-778.

7] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis
Method, Chapman and Hall/CRC Press, Boca Raton (2003).

8] S.J. Liao,An explicit, totally analytic approximate solution for Blasiuse’
viscous flow problems, Appl. Math. Comput. 147 (2004) 499-513.



1194

[10]

[11]

[12]

[13]

[14]

[20]

[21]

[22]
[23]

Ahmad Doosthoseini et al

S.J. Liao, Comparison between the homotopy analysis method and ho-
motopy perturbation method, Appl. Math. Comput. 169 (2005) 1186-
1194.

Alireza Doosthoseini, Ahmad Doosthoseini, Ensiyeh Doosthoseini, M.
M. Sharpasand, An Analytic Solution for Finding the Natural Fre-
quency of a Nonlinear Oscillating System, Applied Mathematical Sci-
ences, 3 (2009) 1031-1039.

S. Dinarvand, A. Doosthoseini, E. Doosthoseini, M.M. Rashidi, Series
solutions for unsteady laminar MHD flow near forward stagnation point
of an impulsively rotating and translating sphere in presence of buoy-
ancy forces, Nonlinear Analysis: Real World Applications , Accepted
Manuscript (2009).

T. Hayat, M. Khan, M. Ayub, On the explicit analytic solutions of an
Oldroyd 6-constant fluid, Int. J. Eng. Sci. 42 (2004), 123-135.

S.J. Liao, I. Pop, Explicit analytic solution for similarity boundary layer
equations, Int. J. Heat Mass Transfer 47 (2004) 75-85.

S. Abbasbandy, The application of homotopy analysis method to nonlin-
ear equations arising in heat transfer, Phys. Lett. A 360 (2006) 109-113.

N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics,
McGraw-Hill, New York, 1973.

R.C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press,
London, 1972.

D.J. Korteweg and G. de Vries, Phil. Mag. 39, 422, 1895.

C. S. Gardner and G. K. Morikawa, Rep. NYU-9082. Courant Inst. of
Math. Sci. New York Univ., New York, 1960.

M.D. Kruskal and N.J. Zabusky, Annu. Rep. MATTQ-21. Plasma Phys.
Lab., Princeton Univ., Princeton, New Jersey, 1963.

N.J. Zabusky, Nonlinear Partial Differential Equations, Academic Press,
New York, 1967.

N.J. Zabusky, Mathematical Models in Physical Sciences, Printice-Hall,
Englewood Cliffs, New Jersey, 1965.

H. Washimi and T. Taniuti, Phys. Rev. Letters 17, 966, 1966.
C. H. Su and C. S. Gardner, J. Math. Phys. 10, 536, 1969.



Explicit analytic solution 1195

[24]  J. M. Burgers, Proc. Roy. Neth. Acad. Sci. 43, 1, 1940.

Received: October, 2009



