
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editor: Rafael Fernández Calvo

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2008 (for the monograph)
© CEPIS 2008 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

 Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Llorenç Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

7 A Brief History of MDA — Andrew Watson

12 MDA Manifestations — Bran Selic

17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Meliá-
Beigbeder, Nathalie Moreno-Vergara, Vicente Pelechano-Ferragud,
Fernando Sánchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

CEPIS NEWS

UPENET (UPGRADE European NETwork)

Monograph: Model-Driven Software Development
(published jointly with Novática*)
Guest Editors: Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

UPGRADE Vol. IX, No. 2, April 2008 17© Novática

Model-Driven Software Development

Keywords: Domain-Specific Languages (DSL), Do-
main-Specific Tools (DST), Model-Driven Architecture
(MDA), Model-Driven Development (MDD).

1 Introduction
The development of information systems is getting in-

creasingly complex as they become more and more distrib-
uted and pervasive. Today’s advanced software developer
must be familiar with a wide range of technologies for de-
scribing software, including modern object-oriented pro-
gramming languages, eXtensible Markup Language (XML)
and its accessories (schemas, queries, transformations),
scripting languages, interface definition languages, proc-
ess description languages, database definition and query
languages, and more. Translating from the requirements of
a business problem to a solution using these technologies
requires a deep understanding of the many architectures and
protocols that comprise a distributed solution. Furthermore,
end-users expect the result to be fast, available, scaleable
and secure even in the face of unpredictable demand and
unreliable network connections. It can be a daunting task.

In areas other than software development, such as elec-
tronic consumer products (TVs and HiFis), cameras, cars
and so on, we have come to expect a high degree of reli-
ability at low cost, coupled increasingly in many cases with
the ability to have items customized to satisfy individual
needs. These expectations are met because of advances in
industrial manufacturing processes made over many dec-
ades. Building a car or a television involves the coordina-
tion of a complex chain of manufacturing steps, many of
which are wholly or partially automated.

We would like to apply similar principles to the con-
struction of software. The main difficulty in doing so is that
we have not yet developed techniques for software descrip-
tion that allow different concerns within the software de-
velopment process to be effectively separated and effec-
tively integrated. Although we increasingly use different
languages for different tasks (programming languages for
writing application logic, XML for transmission of data
between application components, Structured Query Lan-

The Domain-Specific IDE

Steve Cook and Stuart Kent

Years of pursuing efficiencies in software development through model-driven development techniques have led to the
recognition that domain-specific languages can be an effective weapon in the developer’s armoury. But these techniques
by themselves are necessarily limited; only by assimilating them into the overall context of a domain-specific development
process and tools can their real power be harnessed.

Authors

Steve Cook works at Microsoft, and is the software architect of
the Domain-Specific Language Tools which are part of Microsoft
Visual Studio. He is currently working on future versions of
these tools. Previously he was a Distinguished Engineer at IBM,
which he represented in the UML 2.0 specification process at
the OMG. He has worked in the IT industry for more than 30
years, as architect, programmer, author, consultant and teacher.
He is a member of the Editorial Board of the Software and Systems
Modeling Journal, a Fellow of the British Computer Society, and
holds an Honorary Doctor of Science degree from De Montford
University (United Kingdom). <steve.cook@microsoft.com>.

Stuart Kent is a Senior Program Manager on the Visual Studio
team in Microsoft. Stuart joined Microsoft in 2003 to work on
tools and technologies for visual modelling. This culminated in
the Domain-Specific Language Tools, which are now part of
the Visual Studio core tooling platform and are described in a
recent book (Domain-Specific Development with Visual Studio
DSL Tools) that he co-authored. Before joining Microsoft, Stuart
was an academic and consultant, with a reputation in modelling
and model driven development. He has over 50 publications to
his name and made significant contributions to the UML 2.0
and MOF 2.0 specifications. He is a member of the editorial
board of the Software and Systems Modeling journal, and on
the steering committee for the MoDELS series of conferences.
He has a PhD in Computing from Imperial College, London.
<stukent@microsoft.com>.

guage (SQL) for storing and retrieving data in databases,
Web Services Description Language (WSDL) for describ-
ing the interfaces to web-facing components) there are many
complexities involved in getting these languages to work
effectively together.

2 Domain Specific Modelling Languages

2.1 Model Driven Development (MDD)
Model driven development is an approach to software

development where the main focus of attention shifts from
writing code by hand to dealing with higher level abstrac-

18 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

tions (models). The approach aims to increase productivity,
improve reliability and be more predictable.

Typically, a model driven development solution devel-
ops incrementally in stages, as follows.

In the first stage, a solution starts out as a way of getting
an initial boost in productivity by generating code that is
duplicated within and between software applications, in-
stead of writing it by hand. In this situation, the model pro-
vides the information that is variable in amongst the dupli-
cated code, and the code generators merge this with boiler-
plate code to produce the final result. As it is unlikely that
all the required code can be generated from the model, the
architecture of the software application may need to be ad-
justed to ensure that the generated code is kept separate
from any hand written code.

In the next stage, as the code generators become more
complex, it is realized that much of the duplication can be
removed by creating a framework using constructs, where
available, in the underlying programming language. This
generally won’t remove all the duplication, but it will re-
move bloat from the code generators and make them easier
to maintain.

In a third stage, it may be possible to remove the need
for code generation altogether, and write the framework so
that it directly interprets the model.

In subsequent stages, once models have become a first
class citizen in the software development process, they can
then be treated as the target of transformations from yet
more abstract models.

However, there is a lot to consider, even in the first stage,
including:

What language should the model be expressed in?
What’s the best way to write the code generators?
How do we expose the code generators to the users
of the tools, for example when a ship-blocking bug
needs to be fixed?
How do we ensure that generated code can be mixed
with non-generated code so that regeneration does
not overwrite the non-generated code?
How do we ensure that generated code builds and
exhibits the correct behaviour?
How is the generated code tested?
How does a developer debug through the generated
code? Should he need to?

There aren’t easy answers for all these questions. In-
deed, in the next section we argue that questions such as
these require us to think in terms of making the whole tool-
ing environment domain specific, with models and code
generators being only a part of a more holistic, integrated
environment. Nevertheless, when models are an important
part of the overall solution, the most burning question is the
first: what language is used to express the models? That’s
the focus of the remainder of this section, and, when con-

sidering an answer, it’s worth noting that answers to the
other questions involve writing tools, including code gen-
erators, which must be able to access the models program-
matically. The range of situations in which model driven
development provides a productive approach depends di-
rectly on how easy it is to build and test those tools.

2.2 UML
A language often associated with MDD is the Unified

Modeling Language (UML), which is a standard of the
Object Management Group (OMG)1 .The development of
the UML started during the early 1990s, when it emerged
as a unification of the diagramming approaches for object-
oriented systems developed by Grady Booch, James
Rumbaugh and Ivar Jacobson. First standardized in 1997,
it has been through a number of revisions, most recently
the development of version 2.

UML is large and complicated, version 2 especially so.
To understand UML in any depth it is important to under-
stand how it is used. We follow the lead of Martin Fowler,
author of "UML Distilled," one of the most popular intro-
ductory books on UML. Martin divides the use into
UMLAsSketch, UMLAsBlueprint, and UMLAs
ProgrammingLanguage (for more details see <http://
martinfowler.com/bliki>).

UMLAsSketch is very popular. Sketches using UML can
be found on vast numbers of whiteboards in software de-
velopment projects. To use anything other than UMLAs
Sketch as a means of creating informal documentation for
the structure of an object-oriented design would today be
seen as perverse. In this sense, UML has been extremely
successful, and entirely fulfilled the aspirations of its crea-
tors who wanted to eliminate the gratuitous differences be-
tween different ways of diagrammatically depicting an ob-
ject-oriented design.

UMLAsProgrammingLanguage is an initiative sup-
ported by a rather small community, which is unlikely to
gain much headway commercially, and which we will not
dwell upon.

UMLAsBlueprint characterizes the use of UML in MDD.
In this role, UML suffers from two problems:

Bloat. In most MDD solutions, it is likely that only a
small subset of the language will be applicable. So, although
tools implementing UML do generally provide rich program-
matic access to models created using them, the surface area
of the API against which tools - such as code generators -
are written is large, which just makes it that much harder to
code against. Also, unless the chosen graphical UML editor
allows significant parts of the language to be ‘switched off’,
the user of the MDD solution needs to have external guid-
ance on how to use the UML tool within the context of that
solution.

Not domain specific. In order to drive code genera-
tors in MDD, it’s necessary to develop models that fit the
domain, that can supply the exact information required by
the code generators to fill the gaps in the boilerplate and
produce fully executable code, and which conform to the

1 The OMG also uses the trademarked term Model Driven Archi-
tecture (MDA) for its particular take on MDD.

UPGRADE Vol. IX, No. 2, April 2008 19© Novática

Model-Driven Software Development

necessary validation rules that ensure the code generated is
well-formed and builds correctly. UML does support an
extension mechanism, called UML Profiles, which allows
additional data and validation rules to be added to a model.
But this cannot do anything about fundamental conceptual
mismatches between a domain and UML: at best, profiles
allow UML to be used for MDD where there is a reason-
able conceptual match between the domain and UML, and
all that is required is some additional data and validation
rules to make the models precise enough to drive code gen-
erators.

2.3 Domain-Specific Modelling Languages
An alternative to using the UML is to define a domain-

specific language specially designed for the MDD solution.
At first sight, this seems like a significant undertaking,

especially when you consider that in an MDD context the
language needs to be supported by an editor, often graphi-
cal, which validates models and delivers them in a machine-
readable form, as well as providing rich API access to those
models. Indeed, a reason that implementers of MDD solu-
tions may have opted for the sub-optimal UML-based ap-
proach is that it means they don’t have to build their own
graphical editor!

However, this is changing. There are now environments
available such as Microsoft’s Domain Specific Language
Tools (DSL Tools) [1], Eclipse Graphical Modeling Frame-
work (GMF) [2] and MetaCase’s MetaEdit+ [3] which sig-
nificantly reduce the cost of creating your own graphical,
domain specific modelling language and editor. These tools
generate a clean API for accessing models, and also include
support for writing code generators. The editors that are
created support graphical modelling using custom graphi-
cal notations, and allow rich model validation constraints
to be included.

One criticism aimed at using DSLs is that you can end
up creating a range of slightly different languages, one for
each MDD solution. This can be confusing to users, lead-
ing to a lot of very similar looking but subtly different lan-
guages and editors, and also confusing to tool builders who
might end up writing against similar but subtly different
APIs. In contrast, in the UML approach you have a base
language which can be shared between different solutions,
and then have an extensibility mechanism which allows the
base language to be customized for each MDD solution.
The problem with the UML approach is not the principle of
having a base language that is then extended and custom-
ized, but the fact that the UML has not been architected
well to support this. For this approach to be effective, the
UML should have been defined as a collection of small,
loosely coupled, unconstrained base languages capturing
specific modelling styles (class diagram style, component
style, state diagram style, sequence style etc.), where any
detailed content was defined through extensions (e.g. the

Java, .Net and Object-Oriented analysis class diagram ex-
tensions).

3. The Domain-Specific IDE
We’ve suggested that model-driven development can be

made more efficient by designing and implementing do-
main specific modelling languages aimed at specific soft-
ware development problems. But there’s much more to soft-
ware development than modelling, and we’d like to make
the entire software development process more efficient, not
just the modelling part of it.

Models form one aspect of the software development
experience. We must integrate this aspect with others across
the entire lifecycle: envisioning, architecture, design, cod-
ing, debugging, testing, deploying and managing. We are
increasingly discovering that this entire lifecycle is domain-
specific, and that implementing domain-specific software
development languages goes hand-in-hand with implement-
ing domain-specific processes.

Narrowing the domain means building more tools. These
are not simply modelling tools, or domain-specific exten-
sions to programming languages. The domain-specific
lifecycle also requires domain-specific commands, user in-
terfaces, processes and guidance. Elsewhere we’ve described
these requirements as "software factories" [4]. We’ve found
that this can be an overloaded term, referring as it does to
several distinct concepts:

an organization designed to develop a particular kind
of software;

a set of processes that execute to deliver a particular
kind of software;

an integrated set of interactive software tools de-
signed to support such processes.

In this article we are mainly interested in the third of
these, which we’ll call here the Domain-Specific Interac-
tion Development Environment, or Domain-Specific IDE.
We’ll look now at some of the requirements for this.

3.1 Agility
Agile programming embraces evolutionary change

throughout the software development lifecycle and is increas-
ingly recognized as best practice for software development.
The Domain-Specific IDE must support agile software devel-
opment practices. The IDE must avoid processes or commands
that force the developer into premature commitments that are
expensive and time-consuming to reverse. Examples of these
are code generation steps or "wizards" that cannot be repeated
at a later time. The use of models within the IDE can help with
this, as illustrated by Microsoft’s Web Services Software Fac-
tory: Modeling Edition [5].

3.2 Integrating Multiple Languages
The definition of software inevitably involves a combi-

nation of languages. Even in the most traditional environ-
ment there will be distinct languages for programming and
for defining and manipulating data. Today’s popular soft-
ware stacks involve multiple languages: for .NET they in-2 See <http://www.martinfowler.com/bliki/InternalDslStyle.html>.

20 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

clude C#, Visual Basic, SQL, and many dialects of XML
e.g. XAML, with domain-specific languages added to the
mix.

As soon as the artefacts implemented by these languages
cross-reference each other, as they must, we find breakdowns
in agility. For example, renaming a class or a namespace in
a code file can cause compilation errors in a XAML file
which refers to the class or namespace. Finding and cor-
recting such errors can be costly, and a better solution would
be a refactoring engine that spans multiple languages. This
means that new domain-specific languages should be able
to participate in such a refactoring engine, in order to be
first-class citizens in the IDE.

One approach to alleviating such breakdowns is to ex-
pand the scope of one language to cover more of the
lifecycle. Good examples of this approach are the latest
versions of C# and VB .NET, which incorporate LINQ (Lan-
guage-Integrated Query) giving strongly-typed integrated
capabilities for accessing data stores. Further down this route
would be more facilities in these languages for enabling
embedded DSLs2 . Few truly multi-paradigm languages ex-
ist today, though. LISP was the first example of a multi-
paradigm language, and has fallen out of widespread use in
favour of the strongly-typed object oriented programming
languages which are commonly in use today. We’re sure
that these languages do not represent the ultimate destiny
of programming: new developments in programming lan-
guages such as F# [6] enable considerable increases in ex-
pressive power and the design of rich abstractions. F# is
complicated, though, and truly mastering it may be out of
the reach of many software developers.

But however powerful the language, it is unlikely ever
to be the case that a single language can successfully span
the entire software lifecycle. Whether through limitations
in languages or through limitations in their users, techniques
for integrating multiple languages will inevitably be re-
quired.

3.3 Code Generation and "Reverse Engineering"
Code generation is an increasingly prevalent feature of

modern IDEs that allows designs to be expressed in do-
main-specific terms. Code is often generated from models,
defined in a domain-specific modelling language or in UML.
Code can also be generated from other artefacts such as
XML dialects, domain-specific textual languages, data held
in databases, data captured from a What You See Is What
You Get (WYSIWYG) editor (e.g. Windows Forms) or via
User Interface (UI) automation (wizards, snippets etc). The
advantages of code-generation are a substantial reduction
in cost and errors for the creation of repetitive boilerplate
code. Code generation does, however, have several poten-
tial disadvantages:

Non-repeatability. A badly-designed code generation
system can lose the developer’s input after generation, forc-
ing the developer to commit to a set of values and making it
difficult to change their mind.

Hand-modification. A system that requires code to

be modified by hand after it has been generated may pre-
vent a re-generation without erasing the hand-modifications,
unless markers are placed in the generated code to indicate
the hand-written parts, which can make the code unpleas-
ant to read.

Difficulty of interfacing generated and hand-writ-
ten code. Languages features such as C#’s partial classes,
in which a single class can be partially defined in multiple
files, are essential to enable the combination of generated
and hand-written code.

Difficulty of modification. If the generated code is
not what is required, for example it needs to be modified to
introduce additional aspects such as logging or events, then
it may be necessary to change the code generator itself to
make such modifications. Such changes can be error-prone
and incur a considerable test burden.

In the early days of model-driven development there was
a strong tendency amongst the vendors of model-driven tools
to claim the capability to do "reverse engineering", i.e. to
create a model by reading and parsing a codebase. It is wrong
to think of such a procedure as the inverse of code genera-
tion. Useful tools can be created for visualizing a large
codebase, for example showing namespaces, dependencies,
class hierarchies, call graphs etc. These tools operate at the
same level of abstraction as the code and are used to help
understand it at that level. By contrast, code generation
schemes transform representations from a domain to an-
other, more general domain. It is possible to reverse the
generation process to visualize generated code in terms of
the source artefacts from which it is generated, but it is not
generally feasible to extract domain-specific representations
from an arbitrary hand-written codebase.

3.4 Validation, Debugging and Testing
One of the most compelling advantages of domain-spe-

cific representations is the ability to validate software arte-
facts at an appropriate level of abstraction. It is much easier,
for example, to establish that communication paths in a lay-
ered architecture conform to the architecture’s rules in a
model of layers, components and connections, than it is by
trying to deduce the communication paths from the even-
tual code. Simple constraint violations, such as non-unique-
ness of property names or cycles in supposedly acyclic
graphs, can be detected and fixed as early as possible in the
lifecycle.

Validation can be "hard", enforced by a user experience
that simply does not allow invalid configurations to be cre-
ated, or "soft", i.e. evaluated on demand with error and
warning messages referring the developer to the source of
the problem. Hard validations are usually more expensive
to implement, but offer a more habitable user experience;
soft validations rely on carefully written error messages that
effectively direct the user to the root problem. It is impor-
tant to be able to save invalid representations: the IDE should
never force the developer to re-organize their life in order
simply to save their work.

Debugging should also offer a domain-specific experi-

UPGRADE Vol. IX, No. 2, April 2008 21© Novática

Model-Driven Software Development

ence. If the software is described in terms of domain-spe-
cific concepts then its execution may be observed and
stepped through in terms of the same concepts. Implement-
ing a domain-specific modelling language, for complete-
ness, should include implementing debugger plugins that
enable program execution to be visualized and controlled
in domain-specific terms.

Domain-specific development also impacts testing. The
designer of a domain-specific language has two kinds of
testing to think about: testing that the DSL does what it is
supposed to do, and providing an environmen, e.g. a gener-
ated test harness3 , for users of the DSL to test the systems
that they build using it.

3.5 Building the Domain Specific IDE
We’ve observed that narrowing the domain can improve

productivity, but involves building more tools, which in turn
means that it must be relatively cheap to do so. We tackle
this by applying domain-specific techniques to the tool-
building problem. We analyze the domains involved in tool-
building, and build tools that support development in those
domains.

Work on model-driven development over the past dec-
ade or so has involved a lot of thought about "meta-model-
ling". This subject is fraught with misunderstanding and
confusion. Popular definitions are simply wrong: for ex-
ample, the oft-heard definition of a meta-model as "a model
of a model" is both unhelpful and incorrect. If a meta-model
is anything, it is a model of the concepts expressed by a
modelling language. Discussions about meta-modelling
habitually degenerate into a kind of cultish mysticism al-
most entirely unconnected with the business of making soft-
ware.

In practice, a meta-model is a model which is used (usu-
ally through code-generation) to build some aspects of a
modelling tool. The result is that the tool can be built more
cheaply, and thus bring extra efficiencies to solving the ac-
tual problem at hand. We’d like to generalize this principle
to the entire development environment. We don’t just model
modelling concepts, we model all aspects of how the IDE is
constructed, extended and deployed. We’re especially in-
terested in how all of the pieces that constitute a domain-
specific IDE extension can be modelled: these include lan-
guages, commands, extra data carried by the project sys-
tem, forms and toolwindows to interact with that data, and
so on.

4 Conclusion
This article has proposed that an important step forward

in software development tools is the development of do-
main-specific interactive development environments. Such

tools recognise the advantages of model-driven develop-
ment and domain-specific languages, while assimilating
these techniques into an overall development experience
tuned for the specific problem at hand.

References
[1] Steve Cook, Gareth Jones, Stuart Kent, Alan Wills.

"Domain-Specific Development with Visual Studio
DSL Tools", Addison-Wesley 2007. Also see <http://
msdn.com/vsx>.

[2] Eclipse Foundation. Graphical Modeling Framework
(GMF). <http://www.eclipse.org/gmf/>

[3] MetaCase. MetaEdit+. <http://www.metacase.com/>.
[4] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent.

"Software Factories: Assembling Applications with
Patterns, Models, Frameworks and Tools", John Wiley
2004.

[5] Microsoft. Web Service Software Factory: Modeling
Edition. MSDN Library. <http://msdn2.microsoft.com/
en-gb/library/bb931187.aspx>.

[6] Microsoft Research. <http://research.microsoft.com/
fsharp/fsharp.aspx>.

3 In software testing, a test harness or automated test framework
is a collection of software and test data configured to test a pro-
gram unit by running it under varying conditions and monitor its
behavior and outputs. <http://en.wikipedia.org/wiki/Test_harness>.

