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1 Introduction
Model-Driven Engineering (MDE) [1] has emerged as

a powerful approach to building complex enterprise sys-
tems. MDE allows developers to build solutions using ab-
stractions, such as custom diagramming languages, tailored
to their solution domain. For example, in the domain of
deploying software to servers in a datacenter, developers
can manipulate visual diagrams showing how software com-
ponents are mapped to individual hosts, as shown in Figure 1.

Model Intelligence: an Approach to Modeling Guidance

Jules White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

Model-Driven Engineering (MDE) facilitates building solutions in many enterprise application domains through its use
of domain-specific abstractions and constraints. An important attribute of MDE approaches is their ability to check a
solution for domain-specific requirements, such as security constraints, that are hard to evaluate using traditional source-
code focused development efforts. The challenge in many enterprise domains, however, is finding a legitimate solution,
not merely checking solution correctness. For these domains, model intelligence that uses domain constraints to guide
modelers is needed. This paper shows how existing constraint specification and checking practices, such as the Object
Constraint Language, can be adapted and leveraged  to guide users towards correct solutions using visual cues.
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A major benefit that MDE approaches provide is that
custom constraints for each domain can be captured and
embedded into an MDE tool. These domain constraints are
properties, such as the memory demands of a software com-
ponent on a server, that cannot be easily checked by a com-
piler or other third-generation programming language tool.
The domain constraints serve as a domain solution com-
piler that can significantly improve the confidence in the
correctness of a solution. The most widely used constraint
specification language is the Object Constraint Language
(OCL) [2].

Although MDE can improve solution correctness and
catch previously hard to identify errors, in many domains
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Figure 1: Deployment Model for a Datacenter.

Figure 2: Model Editing and Constraint Checking.

the major challenge is deriving the correct solution, not
checking solution correctness. For example, when deploy-
ing software components to servers in a datacenter, each
component can have numerous functional constraints, such
as requiring co-hosting a specific set of other components
with it, and non-functional constraints, such as requiring a
firewalled host, that make developing a deployment model
hard. When faced with large enterprise models with 10s,
100s, or 1,000s of model elements and multiple constraints
per element, manual model building and validation ap-
proaches do not scale.

Enterprise models can also contain global constraints,
such as stipulating that no host’s allocation of components

exceeds its available RAM, which further complicates
modeling. Although languages like OCL can be used to
validate a solution, they still do not make finding the cor-
rect solution any easier. Developers must still manually
construct models and invoke constraint checking to see if a
mistake has been made.

The following properties of enterprise models make
building models challenging:

Enterprise models are often large and may contain
multiple views, making it hard or infeasible for modelers to
see all the information required to make a complex modeling
decision.

Constraints in enterprise systems often involve func-
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Figure 3: Model Editing Sequence for Model Intelligence.

Figure 4: Model Intelligence Queries Across Multiple Constraint Languages.
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tional and non-functional concerns that are scattered across
multiple views or aspects of a model and are hard to solve
manually, and

Enterprise modeling solutions may need to satisfy
complex global constraints or provide optimality, both of
which require finding and evaluating a large number of
potential solution models.

Current model construction techniques are largely
manual processes. The difficulty of understanding an entire
large enterprise model, coupled with the need to find and
evaluate a large number of potential solutions, makes en-
terprise modeling hard.

To motivate the need for tool support to help modelers
deduce solutions to domain constraints, we use an applica-
tion for modeling the deployment of software components
to servers in a datacenter. Ideally, when creating a deploy-
ment, as a developer clicked on each individual software
component to deploy it, the underlying tool infrastructure
could use the domain constraints to derive the viable hosts
for the component. We refer to these mechanisms for guid-
ing modelers towards correct solutions as model intelligence.

2 Limitations of Current Constraint Checking Ap-
proaches

To motivate the challenges of using existing constraint
infrastructure, such as OCL, as a guidance mechanism, we
will evaluate a simple constraint for deploying a software
component to a server. For each component, the host that it
is deployed to should have the correct OS for which the
component is compiled. This constraint can be captured in
OCL as:

context:SoftwareComponent;

inv: self.hostingServer.OS = self.requiredOS;

After a SoftwareComponent has been deployed to
a server, the above constraint checks that the host (stored in
the hostingServer variable) has the OS required by the
component. As shown Figure 2, to utilize the constraint, the
modeler first makes a change to the model (Step 1), invokes
the constraint checker (Step 2), and then sees if an error
state has been entered (Step 3). The challenge is that the
modeler cannot predict ahead of time if the model is being
transitioned to an invalid state. A state is only checked for
errors after control has been transitioned to it.

One way around the inability to check the constraint
before the host is committed to the SoftwareComponent
is to use OCL preconditions as guards on transitions. An
OCL precondition is an expression that must hold true be-
fore an operation is executed. The chief problem of using
OCL preconditions as guards, however, is that they are de-
signed to specify the correct behavior of an operation per-
formed by the implementation of the model. Using an OCL
precondition as a guard during modeling requires defining
the constraint in terms of the operation performed by the
modeling tool and not the model.

For example, the precondition that should be imposed

to check for the correct OS is a constraint on an operation
(e.g., creating a connection) performed by the modeling tool,
not by the model. To define the OCL precondition, therefore,
developers must define the OCL constraint in terms of the
modeling tool’s definition of the operation, which may not use
the same terminology as the model. Moreover, defining the
constraint as a precondition on an operation performed by the
modeling tool requires developers to create a duplicate con-
straint to check if an existing model state is correct.

Without two constraints (one to check the correctness
of the modeling tool action and one to check the correct-
ness of an already constructed model state) it is impossible
to identify operation endpoints and ensure model consist-
ency. The OCL precondition approach therefore adds com-
plexity by requiring developers to maintain separate (and
not necessarily identical) definitions of the constraint that
can potentially drift out of sync. The precondition approach
also couples the constraint to a single modeling platform
since the precondition is defined in terms of the connection
operation exposed by the tool, not the model.

3 Model Intelligence: an Approach to Modeling
Guidance

A modeling tool can implement model intelligence, by
using constraints to derive valid end states for a model edit
before committing the change to the model. Traditional
mechanisms of specifying constraints associate a constraint
with objects (e.g., SoftwareComponents) rather than
the relationships between the objects (e.g., the deployment
relationship between a SoftwareComponent and a
Server).

To determine the validity of a relationship between two
objects, therefore, the relationship must be created and com-
mitted to the model so that constraints on the two objects
associated with the relationship can be checked.

The transitions in the state diagram from Figure 2 cor-
respond to the creation of relationships between objects. To
support model intelligence, a tool needs to use domain con-
straints to check the correctness of the modification of rela-
tionships between objects in a model before the modifica-
tion is committed to the model. If constraints are associated
with the relationships rather than the objects, a tool can use
the constraints associated with the relationship to deduce
valid end states and suggest transitions to a modeler.

3.1 Constraining Relationships
Relationships between objects are edges in the underly-

ing object graph of a model. Each edge has a source and
target object. Using this understanding of relationships,
constraints can be created that specify the correctness of a
relationship in terms of properties of the source and target
elements.

For example, the deployment of a SoftwareComponent
to a Server is represented as a deployment relationship. A
constraint can be applied to a deployment relationship and
specified in terms of the properties of the source (e.g., a
SoftwareComponent) and the target (e.g., a Server):
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context:Deployment;
inv: source.requiredOS = target.OS;

A key property of associating constraints and specify-
ing them in terms of the source and target of the relation-
ship is that a constraint can be used to check the correctness
of the creation of a relationship before the relationship is
committed to a model. Prior to the creation of a relation-
ship, the proposed source and target elements can be sub-
stituted into the constraint expression and the constraint
expression checked for correctness. If the constraint expres-
sion holds true for the proposed source and target elements,
the corresponding relationship can be created in the model.

Section 2 showed that using existing OCL approaches
to model intelligence requires maintaining separate specifi-
cations of each constraint. If constraints are associated with
relationships and expressed in terms of the source and tar-
gets of a relationship, they can be used to check the validity
of a modeling action before it is committed to the model.
Moreover, the same constraint can be used to check exist-
ing relationships between modeling elements, which can
not be done with the standard OCL approach.

3.2 Relationship Endpoint Derivation
A model can be viewed as a knowledge base, i.e., the

model elements define facts about the solution. The goal of
model intelligence is to run queries against the knowledge
base to deduce the valid endpoints (e.g., valid hosts for a
component) of a relationship that is being created by a
modeler. In terms of the state diagram detailing a model
editing scenario shown in Figure 3, the queries derive the
valid states to which a model can transition.

The creation of a relationship begins by modelers se-

lecting a relationship type (e.g., a deployment relationship)
and one endpoint for the new relationship (e.g., a
SoftwareComponent). Model intelligence uses the re-
lationship type to determine the constraints that must hold
for the relationship and then uses the constraints to create
queries to search the knowledge base for valid endpoints to
create the relationship, as shown in Step 2 of Figure 3. The
valid endpoints determine the valid states to which the model
can transition. As shown in Step 3 of Figure 3, the transi-
tions that lead to these valid states can then be suggested to
modelers as valid ways of completing an in-progress
modeling edit.

The creation of a new relationship begins by the modeler
selecting a source for the relationship and a type of rela-
tionship to create. Each relationship type has a set of con-
straints associated with it. Once model intelligence knows
the source object and the OCL constraints on the relation-
ship being modified, a query can be issued to find valid
endpoints to complete the relationship. Using the OS de-
ployment constraint from Section 2 the query to find
endpoints for a deployment relationship would be:

Server.allInstances()->collect(target |
                  target.OS = source.OS);

In this example, model intelligence would specify to the
OCL engine that the source variable mapped to the
SoftwareComponent that had been set as the source of
the deployment relationship. The query would then return
the list of all Servers that had the correct OS for the compo-
nent. For an arbitrary relationship, with constraint Con-
straint, between elements Source and Target of types
SourceType and TargetType, a query can be com-

Figure 5: The Deployment Command Showing Valid Endpoints Derived via Model Intelligence.
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Figure 6: A Model Intelligence Batch Process to Assign a Host for Every Component.

posed to derive valid endpoints. Assuming that a relation-
ship has endpoint Source set, a query can be issued to
find potential values for Target as follow:

TargetType->allInstances()->collect(target |
Constraint);

where Constraint is a boolean expression over the
source and target variables. More generally, the query can
be expressed as: Find all elements of type TargetType
where Constraint holds true if the source is Source.

3.3 Endpoint Derivation Across Multiple
Constraint Languages

Although we have only focused on OCL thus far, the
generalized query definition from Section 3.2 can be mapped
to other constraint or expression languages, as well. In prior
work [4], we implemented model intelligence using OCL,
Prolog, BeanShell, and Groovy. For example, Prolog natu-
rally defines a knowledge base as a set of facts defined us-
ing predicate logic. Queries can be issued over a Prolog

knowledge base by specifying constraints that must be ad-
hered to by the facts returned. Model intelligence can also
be used to derive solutions that are restricted by a group of
constraints defined in multiple heterogeneous languages.
An iterative result filtering process can be used to derive
endpoints that satisfy constraints specified in multiple lan-
guages, as shown in Figure 4.

Initially, model intelligence issues a query to derive po-
tential solutions that respect the constraint set of one con-
straint language.

The results of the query are stored in the set R0. For each
subsequent query language Ci, the results of the query that
satisfy the language’s constraint set are stored in Ri. For each
constraint language Ci, where i > 0, model intelligence issues a
query using a modified version of the query format defined in
Section 3.2: Find all elements of type TargetType where
Constraint holds true if the source is Source and the
element is a member of the set Ri-1.

The modified version of the query introduces a new con-
straint on the solution returned: all elements returned as a
result were a member of the previous result set. A simple
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mechanism for specifying result sets is to associate a unique
ID with each modeling element and to capture query results
as lists of these IDs. The modified queries can then be de-
fined by checking to ensure that both the constraint set holds
and the ID property of each returned modeling element is
contained by the previous result set.

4 Integrating Model Intelligence with the Com-
mand Pattern

There are a large number of uses for model intelligence,
including automatically performing an autonomous batch
process of model edits and providing visual feedback to
modelers. In this section, we show how model intelligence
can be integrated with the Command pattern [3] to provide
visual cues to aid modelers in correctly completing modeling
actions. The Command pattern uses an object to encapsu-
late an action and its needed data and is used in many graphi-
cal modeling frameworks, such as the Eclipse Graphical
Editor Framework [5]. As a modeler edits a model, com-
mands are created and executed on the model to perform
the actions of the modeler.

Modeling platforms provide tools, such as a connection
tool, that a modeler uses to manipulate a model. Each tool
is backed by an individual command object, such as a con-
nection command. When a modeler chooses a tool, an in-
stance of the corresponding command class is created. Sub-
sequent pointing, clicking, and typing by the user, sets the
arguments (e.g., connection endpoints) operated on by the
command. When the arguments of the command are fully
specified (e.g., both endpoints of a connection command
are set), the command executes.

Section 3 described the ability to highlight the valid de-
ployment locations for a software component after a modeler
clicked on it to initiate a deployment connection. This func-
tionality can be achieved by combining model intelligence
with a deployment connection command. After the initial
argument to the deployment connection command is set,
the command can use model intelligence to query for valid
deployment locations. If there is a single server that can
host the component, the command can autonomously choose
it as the deployment location and execute. If there is more
than one potential valid host, each host can be highlighted
via a command to help the user select the command’s final
argument, as shown in Figure 5.

5 Concluding Remarks
Our experience developing models for enterprise appli-

cation domains indicates that simply determining if a model
is correct is not always helpful. We have learned that using
constraints to verify the correctness of relationships between
objects (rather than just individual object states) allows
modeling tools to guide modelers towards correct solutions
by suggesting ways of completing edits. Moreover, batch
processes can be built atop of suggestion mechanisms to
allow tools to autonomously complete sets of modeling ac-
tions. For example, a batch process can be created to de-
ploy a large group of software components, by deriving sets

of valid hosts for each component and intelligently select-
ing a host from each set, as shown in Figure 6. In other
work [4], we have used model intelligence as the basis for
creating batch modeling processes that use constraint solv-
ers to automate large sets of modeling actions and optimally
select endpoints for relationships to satisfy global constraints
or optimization goals.

Our implementation of model intelligence for the Eclipse
Modeling Framework [6], called GEMS EMF Intelligence,
is an open-source project available from <www.eclipse.org/
gmt/gems>.
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