
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editor: Rafael Fernández Calvo

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2008 (for the monograph)
© CEPIS 2008 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

 Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Llorenç Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

7 A Brief History of MDA — Andrew Watson

12 MDA Manifestations — Bran Selic

17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Meliá-
Beigbeder, Nathalie Moreno-Vergara, Vicente Pelechano-Ferragud,
Fernando Sánchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

CEPIS NEWS

UPENET (UPGRADE European NETwork)

Monograph: Model-Driven Software Development
(published jointly with Novática*)
Guest Editors: Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

UPGRADE Vol. IX, No. 2, April 2008 29© Novática

Model-Driven Software Development

Keywords: EMF Compare, Model Comparison , Model
Differences.

1 Introduction
The last decade witnessed a dramatic growth of soft-

ware intricacy and different techniques and methodologies
have been proposed to ease complex system development.
Model Driven Engineering (MDE) [1] shifts the focus of
software development from coding to modelling and lets
software architects harness the opportunity of dealing with
higher-level abstractions. In this respect, models represent
descriptions of phenomena of the real (or imaginary) world
which are usually complete with regard to the designer’s
goal, i.e. a specific task which the designer is pursuing such
as code generation or software analysis. However, models
reach their fundamental effectiveness when they can be
manipulated by means of automated transformations in or-
der to obtain different kinds of artifacts ranging from other
models to documentation or even implementation code. It
is important that designers are able to comprehend the vari-
ous kinds of design-level structural evolution that a soft-
ware system undergoes throughout its entire life-cycle.
Nurturing the detection of differences between models is
essential to model development and management practices,
which are traditionally not neglected in high-quality soft-
ware development processes [2]. Thus, these activities are
crucial not only for understanding the system design and its
evolution but also for obtaining an accurate picture of the
quality requirements of the system so that it can be consist-
ently evolved.

The problem of model differences is intrinsically com-
plex and requires algorithms and notations [3] [4] which
permit to benefit fully from its potential in MDE. This pa-
per presents part of the state of the art in calculating model
differences and outlines a conceptual framework which pre-
scribes crucial requirements to enhance differences to first-
class entities. Accordingly, a solution must necessarily have
a high degree of separation between three relevant aspects
in model differentiation: calculation, representation, and
visualization. In fact, in current proposals the distinctions
between the three aspects are often blurred thus compro-

mising the adoption of generic modelling techniques [5].
In this paper, we discuss the problem of model differ-
ences and illustrate how EMF Compare [6] addresses
this difficult task in the Eclipse generic platform. In par-
ticular, the approach is metamodel-independent, i.e. it ap-
plies to models which conform to arbitrary metamodels,
and is based on similarity techniques (see Sect. 2) which
provide enhanced flexibility and interoperability. Moreo-
ver, it is model-based in the sense that the outcome of a
model comparison is represented by means of a model
which enables its manipulations in model-to-model or
model-to-text transformations.

The paper is structured as follows: in Section 2 an intro-
duction to the problem of model differences is presented
and a number of representation requirements are given.
Section 3 presents EMF Compare describing both calcula-
tion, representation, and an evaluation with regard to the

Model Differences in the Eclipse Modelling Framework
Cédric Brun and Alfonso Pierantonio

Increasingly, recording the various kinds of design-level structural evolution that a system undergoes throughout its entire
life-cycle is gaining a fundamental importance and cannot be neglected in software modeling and development. In this
respect, an interesting and useful operation between the designs of subsequent system versions is the difference manage-
ment consisting in calculation, representation, and visualization. This work presents EMF Compare, an approach to
model difference calculation and representation for the EMF (Eclipse Modelling Framework). Apart from enhancing the
rank of model differences to that of first-class artifacts according to the "everything is a model" principle, the approach
presents several properties which are discussed according to a conceptual framework.

Authors

Cédric Brun is a Research Engineer at Obeo and Project Lead
of the EMF compare project in Eclipse. In charge of the Acceleo
community, he also works on software evolution, re-
engineering and cartography of legacy systems through model
driven processes. He is a graduate of the Polytech engineering
school and a graduate and research Master at the University of
Nantes, and has specialised in software engineering and model
driven engineering. Prior to his current jobs, he was an active
contributor to Open Source development and worked in
Guangzhou on a global video conference solution for the
Chinese Education and Research Network (CERNET)
<cedric.brun@obeo.fr>.

Alfonso Pierantonio is Associate Professor in the Computer
Science Department at the University of L’Aquila, Italy. His
present research interests include general model engineering
and more specifically model transformation and techniques for
model differencing and management in current model-
engineering platforms. He has been involved in program and
organization committees of conferences and co-edited several
special issues on scientific journals about these subjects.
<alfonso@di.univaq.it>.

30 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

requirements introduced in Section 2. Finally some conclu-
sions are drawn.

2 Model Difference
As previously mentioned, the problem of model

differenciation is intrinsically complex and in order to ana-
lyse and/or propose a possible solution, it is important to
decompose the problem into its constituent parts. In fact,
its complexity is manifold and refers at least to the follow-
ing aspects:

a) calculation: a procedure, method or algorithm able
to compare or contrast two distinct models;

b) representation: the outcome of the calculation must
be represented in some form, current notations present de-
ficiencies since they are heavily affected by the calculation
method or by the proposed application;

c) visualization: model differences often requires to be
visualized in a human-readable notation which let the de-
signer grasp the rationale behind the modification which
the models underwent during their lifetime.

In the sequel of the paper we will discuss these aspects
according to the available literature and will try to present
and characterize EMF Compare according to them.

Calculation. In the context of software evolution, dif-
ference calculation has been intensively investigated as
witnessed by a number of approaches ranging from text–
comparisons to model–differencing techniques. As stated
by T. Mens in [7], delta calculation algorithms can be clas-
sified by different points of view, each of which is related
to the particular application the approach is used for. Spe-
cialized differencing methods have been introduced to
strictly compare Universal Modelling Language diagrams,
such as [8] [9] [10] amongst others. These approaches can
be divided in two main categories depending whether they
make use of persistent identifiers or similarity metrics: the
former relies heavily on identifiers which are assigned to
model elements by the modelling tools. This compromises
interoperability and locks the models within a specific plat-
form since identifiers are not universally computable. The
latter approach establishes how similar two model elements
are by comparing not only the properties local to the ele-
ments but also their global properties which makes the
method agnostic of the modeling tools being independent
from the any identification mechanism thus making the
method independent of modelling tools and indentification
mechanisms. A generalization of the work by Z. Xing and
E. Stroulia [10] is an approach based on structural similar-
ity which is able to compare not only UML (Universal
Modelling Language) models but also models conforming
to any arbitrary metamodel [11]. This represents an advance
towards a wider acceptance of difference and version man-
agement in software development and generic modelling
platforms (for instance [12] [13]).

Representation. Detecting differences and identifying
mappings among distinct versions of a system design is pre-
paratory to represent at least part of such knowledge. Find-
ing a suitable representation for model differences is cru-
cial for its exploitation, as for instance deriving refactoring
operations from a delta document1 describing how a data-
base schema evolved in time. However, the effectiveness
of representation of model differences is often compromised
by factors such as the calculation method or the scope of
the model difference. For instance, in the case of edit scripts
the representation is operational since it describes how to
modify the initial model in order to obtain the final model.
Clearly, such a representation notation suffers from a lack
of abstraction and, let alone the capability of reconstructing
the final model, does not easily allow any further manipu-
lation or analysis since it requires ad-hoc tools. In other
cases, the representation may even be model-based (which
permits further manipulations of the differences), as in the
case of coloring, but the visualization and the representa-
tion tend to overlap and the overall method is affected by
the way the differences are computed, i.e. in a set-theoretic
fashion. In general, a proper representation must contain
all the information defining the differences and must make
this knowledge available to further analyses and manipula-
tions. Thus, we believe it must be given in terms of abstract
syntax by introducing suitable metamodels as outlined be-
low.

Visualization. Differences often require to be presented
according to a specific need or scope highlighting those
pieces of information which are relevant only for the pre-
fixed goal. In other words, a visualization is realized by
giving a concrete syntax which renders the abstract syntax
(representation) and may vary from intuitive diagrammatic
notations to textual catalogues as, for instance, spreadsheet
data. The same representation may include different
visualizations depending on the specific purpose the de-
signer has in mind. In this respect, both edi scripts and col-
ouring represent two different visualizations although they
are generated directly by the specific differencing algorithm
and letting the representation be rendered by means of in-
ternal formats which prevent them from being processed in
tool chains. For instance, edit scripts render both represen-
tation and visualization with the same notation.

Clearly, the calculations and representations are the cen-
tral ingredients for any solution. In particular, we are inter-
ested in those representations which raise model differences
to the rank of first class objects fulfilling the "everything is
a model" principle [5]. As a consequence, a number of de-
sirable properties must be imposed on representation tech-
niques as discussed in [14] and described below.

1) model-based, the outcome of a difference calcula-
tion must be represented as a model to enable a wide range
of possibilities, such as subsequent analysis, conflict detec-
tion or manipulations;

2) compactness, the difference model must be compact
and contain only the necessary information to represent the
modifications, without duplicating parts such as those model

1 A document which lists the changes in the contents of another
document.

UPGRADE Vol. IX, No. 2, April 2008 31© Novática

Model-Driven Software Development

elements which are not involved in the change;
3) self-contained, a difference model must not rely on

external sources of information, as for instance references
to base model elements or base metamodels;

4) transformative, each difference model must induce
a transformation, such that whenever it is applied to the
initial model it yields the final model. Moreover, the trans-
formation must also be applicable to any other model which
is possibly left unchanged in case the elements specified in
the difference model are not contained in it;

5) compositionality, the result of subsequent or paral-
lel modifications is a difference model whose definition
depends only on difference models being composed and is
compatible with the induced transformations;

6) metamodel independence, the representation tech-
niques must be agnostic of the base metamodel, i.e., the
metamodel which the base models conform to. In other
words, it must be not limited to specific metamodels, as for
instance happens for certain calculation methods (e.g., [9]
[10]) which are given for the UML metamodel.

The above discussion presents a minimal set of require-
ments which should be taken into account in order to let a
generic modeling platform deal with an advanced form of
model management. In the next section, we will illustrate
EMF Compare showing how our approach fulfills most of
the described requirements.

3 EMF Compare
EMF Compare is an Eclipse project which was initiated

in 2006 at Eclipse Summit Europe, where the need for a
model comparison engine emerged. The Obeo and Intalio
companies [15] [16] contributed the first implementation
of this component which has had two stable releases since
that time. The goals of this component are to provide "out
of the box" model comparison and merge support. Even if
we think that one unique algorithm is able to provide good
results both in term of efficiency and performance, we are
aware that there may be several solutions to a problem, at
different levels of generality and which depend on the main
concerns one wants to address with model comparison (see
Sect. 2). That is why this component has been designed with
a high degree of extensibility in mind and every part of the
entire comparison process is customizable.

The global comparison process is generally admitted as
being composed of two main parts: the matching and the
differencing parts. In EMF Compare these parts are explic-
itly separate and processed by two kinds of data proces-
sors, the matching and the differencing engine, respectively.
These engines are pluggable components: generic engines
are provided to match and analyse any model conforming
to an arbitrary meta-model (they will be described in the
next section) but one can plug in new ones in order to adapt
these operations for a given meta-model or to experiment
with new algorithms.

Another strong aspect of this implementation is that we
think that models should be implemented as already sug-
gested. That is why EMF Compare is based on model rep-

resentations of both differencing and matching of two mod-
els. That means one can get those models and use them to
produce differences reports thanks to model-to-text trans-
formation, or can refactor the differencing model to ignore
some differences. In this respect, the method is model-based
according to the requirements in Section 2.

3.1 Calculation Method
Analysing models to identify the matching information

is the fundamental part of the comparison process and inac-
curacies in this phase will affect the quality of the overall
difference detection mechanism. Consequently this algo-
rithm produces most of the calculation complexity. In es-
sence, we have to consider all the elements of both versions
of the model and decide whether an element in the first
version is the same as another one in the second version.
We do use the "same" word as we do not want to test equal-
ity, we are just trying to find out if this element has a com-
mon ancestor. Next we will analyse the intrinsic differences
of these elements to produce the difference model.

The generic match engine is based on statistics, heuris-
tics, and instances which are compared with four different
metrics aggregated in an overall score of matching. These
metrics analyse the name of an element, its content, its type
and the relations it has with other elements; it returns a value
ranging from 0 (nothing in common) to 1 (identity) which
will be balanced with additional factors in order to get the
overall score. Especially, the "name" metric tries to find an
attribute standing for a name of the model element, the "type"
metric compares the meta-class features, this is useful if
you want to consider the possible types refactoring (an In-
terface changed in Class for instance). The "relation" metric
considers the linked instances both from containment and from
non-contained relations, respectively. Finally, the "content"
metric analyses the intrinsic content of the instance.

In general, the comparison uses a great deal of informa-
tion which are not relevant and that can be, therefore, called
information noise. The metrics gets "false high scores" be-
cause most of the data comes from default values which are
shared amongst instances. These cases have been processed
by means of a filter, which first analyses both models and
maintains a record of the features which "always have the
same values in both models", then ignores such features
while computing the metrics. As a consequence, the metric
scores are more realistic as they are not affected by this
information noise.

We only described the 2-way comparisons, since the 3-
way comparisons can be given in terms of

2-way comparisons as specified by the match model. In
particular, a difference can be an instance of either
Match2Elements or Match3Elements metaclasses with the
latter defined in terms of the several instances of the former.
Moreover, model elements which do not have a match are
referenced as an UnMatched entity.

In order to evaluate the score of a content match, we
first create a string representation of what is contained in
the instances, and then we compare both strings using a

32 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

simple "string pairing" algorithm. Each metric uses the same
kind of process; it first gets a string representation of what
we call the "relations" of an element, and then compares
these strings.

Ideally, for each element of the first version we have to
discover the most similar element of the second version.
Unfortunately, most of the complexity lies there because it
needs to browse the second model for each element of the
first model. In the EMF Compare implementation we started
from the following assumptions: most of the things do not
change and the probability of moving an element outside
its "neighborhood" is really low. Thus, the chosen match-
ing strategy analyses both models at the same time, match-
ing the elements available within the limits of a given search
window. Upon completion of the analysis, elements which
are not matched will be compared with each other to pro-
duce new matches. The outcome is a match model which is,
in turn, passed to the differencing engine which operates in
a quite straightforward fashion. In fact, once elements from
both models are put in correspondence, they are compared
and eventual differences are evaluated.

With regard to the discussion in Section 2, the computa-
tion algorithm is based on a measure of similarity and does
not fall within the class of methods which make use of per-
sistent identifiers, which makes the computation quite gen-
eral and suitable for tool chaining and integration. The de-
composition of the algorithm in a matching and differencing
module permits the individual reuse of such components
and the opportunity for such components to be easily
adopted in the realization of additional functionalities, as
model patching, for instance.

3.2 Representation
Both match and differencing information are represented

by means of models which can be reused in model transfor-
mations; such models conform to the match and diff Ecore
meta-models [6]. A match model is a specialization of a
weaving model [5] which provides associations between
elements from the first model and elements from the sec-
ond model. Another data item which we encode in the model
is the overall score evaluated while performing the match-
ing.

In the rest of the section, the representation mechanism
of EMF Compare is evaluated with regard to the properties
given in Section 2. In particular, the approach satisfies the
model-based requirement since the calculated differences
are represented through models that conform to the pro-
vided diff metamodel mentioned above. Being more pre-
cise, a difference model reflects the changes made on the
first model to obtain the second one, representing them by
means of meta-classes like AddModelElement or
UpdateAttribute and difference containers called DiffGroup.
The AddModelElement metaclass has two references, one
to the element which has been added in the final model, and
another to the corresponding container in the initial one. In
this sense, the approach is metamodel independent. In fact,
the diff metamodel provides constructs able to represent

differences between arbitrary models and it does not make
any assumptions about the metamodel which the models
being differenced have to conform to.

With regard to the compactness, the approach produces
difference models which represent only the elements in-
volved in the changes and the differenced models are not
duplicated as in case of colouring. Moreover, EMF Com-
pare provides facilities to reduce the verbosity and the com-
plexity of the difference models. In order to understand them,
let us consider a rich metamodel like UML2: this metamodel
provides a huge expressiveness since each metaclass has a
many attributes and references. For instance, an associa-
tion between two classes involves many metamodel ele-
ments like AssociationEnds, Properties and so on. This
means that when we compare two UML models, the user is
overwhelmed by too many details and analysing them is
quite difficult. For instance, an added property may come
from the fact that the developer added an association and
that it is one of its end properties.

To cope with these problems, EMF Compare enables
the specification of higher level differences. In particular,
by means of meta-model extensions one can contribute a
new kind of difference, for instance
AddNavigableAssociation which will hide the three
AddModelElement detected for the association and the two
properties. With this new kind of difference a new proces-
sor is contributed which will refactor the original diff model
in order to create the new AddNavigableAssociation in-
stances. This is useful in order to get different kinds of granu-
larity on the difference and to handle specific merging in
which order is important.

The representation of the differences produced by means
of EMF Compare are transformative but with some limita-
tions. In particular, each difference model induces a trans-
formation which when applied to the first model generates
the final one. However, the representation is not context-
independent since the induced transformation cannot be
applied to arbitrary input models but only to the first one
used for the difference calculation. Nevertheless, this as-
pect does not compromise compositionality and difference
models of subsequent versions of a model can be composed
together.

Even if the difference model is deduced from the match
model, we do not want it to depend on the match model.
That means that every information item which is relevant
to the difference, and as such needed to merge these differ-
ences, should be available in the difference model. This
confers to the technique the important self-containment
property.

3.3 Performance
Manipulating realistic scale models and, in particular,

calculating differences between models can pose major
questions about computational efficiency. In fact, perform-
ance has been one of the key concerns with regard to the
generic engines provided with EMF Compare. For instance,
the latest release compares two UML2 models of approxi-

UPGRADE Vol. IX, No. 2, April 2008 33© Novática

Model-Driven Software Development

mately five thousand elements in a few seconds. Of course,
many parameters affect the performances of the compari-
son, the first one being the number of differences. The more
differences we have (especially added and removed ele-
ments), the more we need to iterate through the remaining
items at the end of the matching process. Model structure
is also an important parameter affecting the approach. In
fact, a more structured model allows faster comparisons
since the structure eases the task of finding matching ele-
ments.

This leads to another issue linked with the way the ge-
neric match engine analyses the models. An instance iden-
tity can be often regarded as valid within a certain locality,
as for instance a package containing a class is definitely an
important element for the class identity, but for some other
kind of models this assumption does not hold and the analy-
sis strategy is consequently inefficient.

Finally, the biggest problem with the current implemen-
tation is common to many systems based on threshold val-
ues, since these thresholds are based on massive experi-
ments on many real world models and are not based on any
formal theory nor able to auto-adapt themselves. Though
this pragmatic approach is useful and gives encouraging
results, it would probably benefit from techniques that pre-
vent elements from being "just under the metric threshold"
leading to an inaccurate comparison.

4 Conclusions and Future Work
Model differencing has been intensively investigated

over the last few years. There has been some work (e.g., [8]
[9] [10]) that proposed automated UML–aware differencing
algorithms which, in contrast with traditional lexical ap-
proaches, such as GNU diff-like tools (see [17] [18] [19]
among others), are capable of capturing the high-level logi-
cal/structural changes of a software system. More recently,
another approach [11] based on structural similarity ex-
tended differencing to metamodel independency, i.e., to
models conformant to an arbitrary metamodel. However,
the capability of tools to operate on change documentation
which conforms only to their own internal format tends to
lock software development into a single tool thus compro-
mising its exploitation as part of a tool chain.

In this paper we have presented EMF Compare, a
metamodel-independent approach to model differencing
based on similarity techniques and fully implemented on
the generic modeling platform provided by Eclipse. The
problem of model differences presents several difficulties
both in calculation and in representation. As opposed to other
approaches, EMF Compare rigorously adheres to the re-
quirements prescribed in [14] which assures that the method
may be fully integrated into tool chains where differences
can be manipulated or analysed by means of standard model-
driven tools. With regard to the work in [4] EMF Compare
shares many characteristics and provides a strong distinc-
tion among representation and visualization where the di-
viding line is somewhat blurred in the other approach.

Future work includes the enhancement of the

transformability property. In essence, difference models can
be viewed as model patches with a certain degree of
fuzziness or adjustability in their application. To this end,
different models as computed by EMF Compare require to
be further transformed in another models conforming to the
metamodels introduced in [14]. This would essentially need
to flatten the weaving model given in the difference model
as presented here.

Acknowledgements
We would like to thank Antonio Cicchetti and Davide

Di Ruscio for their long and insightful discussions on this
project.

References
[1] B. Selic. The Pragmatics of Model-driven Develop-

ment. IEEE Software, 20(5):19–25, 2003.
[2] R. Conradi, B. Westfechtel. Version models for soft-

ware configuration management. ACM Computing
Surveys, 30(2):232–282, 1998.

[3] D.S. Kolovos, R.F. Paige, F. A. Polack. Model com-
parison: a foundation for model composition and model
transformation testing Proceedings of the Int. Work-
shop GaMMa ’06, ACM Press, 2006, 13-20.

[4] Y. Lin, J. Zhang, J. Gray. Model Comparison: A Key
Challenge for Transformation Testing and Version
Control in Model Driven Software Development.
OOPSLA Workshop on Best Practices for Model-
Driven Software Development, 2004.

[5] J. Bézivin. On the Unification Power of Models. Jour-
nal on Software and System Modeling, 4(2):171–188,
2005.

[6] EMF Compare. <http://wiki.eclipse.org/index.php/
EMF_Compare>.

[7] T. Mens. A state-of-the-art survey on software merg-
ing. IEEE Trans. Softw. Eng. 28, 5 (2002), 449–462.

[8] M. Analen, I. Porres. Difference and union of models.
In UML 2003 - The Unified Modeling Language
(2003), vol. 2863 of LNCS, Springer-Verlag, pp. 2–
17.

[9] D. Ohst, M. Welle, U. Kelter. Differences between ver-
sions of UML diagrams. In ESEC/FSE-11: Proc. ESEC/
FSE (2003), ACM Press, pp. 227–236.

[10] Z. Xing, E. Stroulia. UMLDiff: an algorithm for ob-
ject-oriented design differencing. In 20th IEEE/ACM
ASE (2005), ACM, pp. 54–65.

[11] Y. Lin, J. Gray, F. Jouault. DSMDiff: A Differentiation
Tool for Domain-Specific Models, European Journal
of Information Systems (2007) 16, pp. 349–361.

[12] J. Bézivin, F. Jouault, P. Rosenthal, P. Valduriez.
Modeling in the Large and Modeling in the Small. In
Model Driven Architecture, European MDA Work-
shops: Foundations and Applications (2004), vol. 3599
of LNCS, Springer, pp. 33–46.

[13] A. Ledeczi, M.Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, P. Volgyesi.
The Generic Modeling Environment. In Workshop on

34 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Intelligent Signal Processing, 2001.
[14] A. Cicchetti, D. di Ruscio, A. Pierantonio. A Metamodel

Independent Approach to Difference Representation.
Journal of Object Technology, vol. 6, no. 9, Special
Issue: TOOLS EUROPE 2007, Zurich (Switzerland),
October 2007, pages 165–185.

[15] Obeo. <http://www.obeo.fr/>
[16] Intalio. <http://www.intalio.com/>
[17] S. G. Eick, T. L. Graves, A. F. Karr, J. S.Marron,

A.Mockus. Does code decay? assessing the evidence
from change management data. IEEE Trans. Software
Eng., 27(1):1–12, 2001.

[18] S. G. Eick, J. L. Steffen, E. E. Sumner Jr. Seesoft-a
tool for visualizing line oriented software statistics.
IEEE Trans. Software Eng., 18(11):957–968, 1992.

[19] M. Fischer, M. Pinzger, H. Gall. Populating a release
history database from version control and bug track-
ing systems. In Procs. ICSM 2003, pages 23–32. IEEE
Computer Society.

