UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http:/iwww.cepis.org/>) by Novatica
<http:/www.ati.esinovatica/>, journal of the Spanish CEPIS society ATI
(Asociacion de Técnicos de Informatica, <http:/fwww.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novatica

UPGRADE was created in October 2000 by CEPIS and was first
published by Novatica and INFORMATIK/INFORMATIQUE, hi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European

NETwork), the network of CEPIS member societies’ publications, that

currently includes the following ones:

« Informatica, journal from the Slovenian CEPIS society SDI

+ Informatik-Spektrum, journal published by Springer Verlag on behalf
of the CEPIS societies GI, Germany, and SI, Switzerland

+ ITNOW, magazine published by Oxford University Press on behalf of
the British CEPIS society BCS

+ Mondo Digitale, digital journal from the Italian CEPIS society AICA

+ Novética, journal from the Spanish CEPIS society ATl

+ OCG Journal, journal from the Austrian CEPIS society OCG

+ Pliroforiki, journal from the Cyprus CEPIS society CCS

+ Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

« Télvumél, journal from the Icelandic CEPIS society ISIP

Editorial Team

Chief Editor: Lloreng Pagés-Casas

Deputy Chief Editor: Francisco-Javier Cantais-Sanchez
Associate Editor: Rafael Fernandez Calvo

Editorial Board

Prof. Wolffried Stucky, CEPIS Former President

Prof. Nello Scarabottolo, CEPIS Vice President

Fernando Piera Gémez and Lloreng Pagés-Casas, ATI (Spain)
Francois Louis Nicolet, SI (Switzerland)

Roberto Carniel, ALSI - Tecnoteca (Italy)

UPENET Advisory Board

Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenc Pagés-Casas (Novatica, Spain)
Veith Risak (OCG Journal, Austria)

Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kari Olafsson (Télvumal, Iceland)
Rafael Fernandez Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008

Layout Design: Frangois Louis Nicolet
Composition: Jorge Ll&cer-Gil de Ramales

Editorial correspondence: Lloreng Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© Novética 2008 (for the monograph)

© CEPIS 2008 (for the sections UPENET and CEPIS News)

All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility
ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

@cers LH2GRADE

The European Journal for the Informatics Professional
http:/ /www.upgrade-cepis.org

Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Lloreng Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesus Garcia-Molina,
and Gustavo Rossi

7 ABrief History of MDA — Andrew Watson
12 MDA Manifestations — Bran Selic
17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Melia-
Beigbeder, Nathalie Moreno-\ergara, Vicente Pelechano-Ferragud,
Fernando Sanchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novatica, journal of the Spanish CEPIS society ATl (Asociacion de Técnicos de
Informatica) at <http://www.ati.es/novatica/>.

Model-Driven Software Development

A Brief History of MDA

Andrew Watson

On 8th March 2000 Object Management Group (OMG) announced that its Architecture Board had voted to adopt the
Model-Driven Architecture (MDA) as both the strategic approach to developing OMG’s own integration standards, and
as its recommended application development technique. MDA was devised before the term "Service-Oriented Architec-
ture" (SOA) became fashionable, and when many Business Process Management (BPM) techniques and languages were
in their infancy. However, through a combination of foresight and good fortune MDA techniques are, if anything, more
relevant today in the world of SOA and BPM than they were in 2000. This short history of MDA charts the influences that
led to its creation, shows how its has evolved, and outlines the contributions it can make in the future.

Keywords: Business Process Management (BPM),
Model-Driven, Model-Driven Architecture (MDA), Object
Management Group (OMG), Service-Oriented Architecture
(SOA), Unified Modelling Language (UML).

1 Origins

OMG came into being in the late 1980s as an independ-
ent, not-for-profit industry organisation to specify object-
based middleware that could help solve the growing prob-
lem of integrating IT systems that spanned multiple plat-
forms. The resulting Common Object Request Broker Ar-
chitecture (CORBA®) middleware and its related specifica-
tions became very widely used, and by 1999 an analyst sur-
vey [1] found that "70 percent of respondents cited CORBA
compliance as ‘important’ or ‘very important’ to integra-
tion, outpacing every other factor in the survey".

From the mid-1990s OMG also began developing spe-
cialised middleware-based interoperability standards for
application domains ranging from finance through telecoms
to healthcare. In each of these areas, groups of highly-quali-
fied domain experts devoted several man-years of effort to
specifying standards for domain application components,
using CORBA’s Interface Definition Language (IDL) to
specify the service interfaces that these components would
provide and use. These standard services and the CORBA
middleware they used to communicate formed the basis of
OMG’s Service-Oriented Architecture, known as the Ob-
ject Management Architecture (OMA).

By the late 1990s OMG had used CORBA and IDL to
specify several families of domain-specific services for dif-
ferent industries, and in the process had identified two limi-
tations with this purely middleware-based approach to cre-
ating integration standards:

m IDL provides a precise way to specify the structure
of the data that application components exchange with each
other. However, since the CORBA middleware doesn’t need
to know or constrain the order in which the data are ex-
changed or the semantic relationships between the data
fields, IDL doesn’t provide any way of specifying these parts
of the design. These important application-level constraints
could only be captured using imprecise natural language,

© Novatica

Author

Andrew Watson is Vice President and Technical Director at
OMG. Andrew has overall responsibility for OMG’s technology
adoption process, and also chairs the Architecture Board, the
group of distinguished technical contributors from OMG member
organisations which oversees the technical consistency of
OMG?’s specifications. Previously Andrew researched service
oriented architectures and their type systems with the ANSA
core team in Cambridge, wrote Lisp compilers at Harlequin,
and worked on distributed systems and software engineering at
HP Laboratories. <andrew@omg.org>.

which was becoming more and more of a difficulty as the
domain specifications became more sophisticated.

m The application component designs created by
OMG’s Domain groups were often equally usable with other
middleware architectures; for instance, the Java Transac-
tion Service (JTS)[2] is a translation into pure Java inter-
faces of the functions defined by the CORBA Object Trans-
action Service (OTS)[3]. However, converting OMG’s
specifications from IDL to another platform involves knowl-
edge of both the source CORBA environment and the cho-
sen target, and not all designers have this detailed knowl-
edge. Furthermore, where there are multiple options for
translating an interface element, multiple mappings are pos-
sible; hence different designers would likely generate dif-
ferent (and incompatible) translations.

It became clear that each of OMG’s domain groups in-
corporated a large pool of priceless domain expertise, and
in the process of creating domain interoperability specifi-
cations were actually creating valuable models for standard
subsystems. However, the difficulty of precisely capturing
non-structural aspects of the interfaces or translating the
interfaces into other notations were preventing this valu-
able work being used to its full potential.

2 MDA is Born

To address these concerns, OMG decided to switch from
a middleware-based approach to specifying SOA services
to a platform-independent approach which could capture

UPGRADE vaol. Ix, No. 2, April 2008 7

Model-Driven Software Development

behavioral as well as structural aspects of interoperability.
These Platform-Independent Models (PIMs) could then be
translated via standardised transformation rules into inter-
face specifications for any particular application platform,
such as CORBA, Java, or one of the emerging families of
"Internet Middleware" based on eXtensible Markup Lan-
guage (XML), such as Simple Object Access Protocol / Web
Services Description Language (SOAP/WSDL).

During the mid-1990s OMG had also helped broker
agreement within the fledgling Object-Oriented (OO) visual
modelling community, creating the Unified Modelling Lan-
guage (UML®), a family of 13 diagram types for the visual
representation of different static and dynamic aspects of ap-
plication software design. Applying UML and the Meta-
Object Framework (MOF™), the standardised metadata
framework on which it’s based, to the problem of creating
platform-independent service specifications led to the crea-
tion of MDA. Use of formal, rigorously-defined modelling
languages is the key; only with a precise definition of the mean-
ing of every construct in the language is it possible to mecha-
nise translating the PIM into the implementation artefacts for
the target platforms (such as IDL or Java interfaces), and thereby
achieve the goal of platform independence.

MDA was thus first mooted as a way of creating stand-
ards. However, it was immediately obvious that the same
tools and techniques could be used to build applications;
transforming a precise but abstract design into the frame-
work of an application is a very similar problem to translat-
ing into a platform-specific standard. Depending on the
modelling language being used, it might not be possible to
completely specify a whole application as a PIM, but at the
very least a large part of the application’s static structure
and interface design could be captured and then translated
into code or other platform-specific artefacts. Many appli-
cations use multiple platforms and programming languages
simultaneously; transforming different parts of a common
PIM into complementary Platform Specific Models (PSMs)
for the different platforms used helps address the problem
of maintaining common interface definitions across a vari-
ety of implementation technologies. By creating applica-
tion outlines directly from models, and helping to automati-
cally write the "glue code" between different platforms
within one application, it was initially estimated that even
the early modelling technology available at the time could
be used to create 30-40% of the application code directly
from an MDA PIM, yielding useful increases in software
quality and productivity.

It’s important to note that the PIM is one of the main
products of the MDA design process, not just a transient
stage in the process. If changes are later needed as the speci-
fication or application evolves, it is the PIM, not the gener-
ated artefacts, that are modified. In short, MDA treats de-
sign as a product not a process.

3 OMG Specification Developments to Support

MDA
Once the MDA vision was in place, OMG began work

8 UPGRADE vol. 1x, No. 2, April 2008

to evolve its modelling specifications to better support it.
The main results were the UML 2 revision and ongoing work
on the MOF 2 metamodelling specification.

Although the basic structure and specification of UML
1 and UML 2 are much the same, the detailed design and
underpinnings of UML have been shaped by MDA over the
past 7 years. Even today, many engineers use UML merely
as a way of sketching software designs, as an aide memoire
or a way of documenting or communicating design. Since
sketches are meant to be read by people, not tools, some
imprecision, while undesirable, can be tolerated, or even
go completely unnoticed. When UML is used for only for
sketching, the appearance and readability of the diagrams
matters much more than the underlying representation of
the model itself within the modelling tool. Although UML
1 provided a formal, standard metamodel for each diagram
type, common features of these metamodels had not been
factored out, and there were also some inconsistencies be-
tween the metamodels for different diagrams.

With the advent of MDA, that began to change. OMG
began a major revision of the UML specification to UML
2; one of the aims of this revision was to improve the qual-
ity of the UML metamodel to make it easier to extract in-
formation from them as part of the MDA process. At the
same time, UML tool vendors started to devote more effort
to producing compliant models corresponding to the dia-
grams that their tools were used to create. As a result both
today’s UML and the tools that implement it are much bet-
ter suited to model-driven development techniques.

MOF, the metamodelling foundation on which all mod-
elling languages used for MDA are based, has also evolved
over the last seven years. A new version of the core MOF
specification was released at the same time as UML 2, build-
ing on the experience of MOF 1 and UML 1 to make MOF
into a truly versatile foundation for models and model trans-
formation. The MOF2 Core specification contains the ba-
sic metamodelling framework, and has two compliance
points: EMOF (Essential MOF) and CMOF (Complete
MOF). Further specifications provide extra MOF-related
features. Perhaps the most important is the MOF Query,
View & Transformation (QVT) specification, which pro-
vides standardised mechanisms for making model-to-model
transformations. Such transformations, for example from
PIM to PSM, lie at the heart of MDA, and providing a stand-
ard language for executing them allows libraries of stand-
ard transformations to be created. Other MOF-related stand-
ards include Versioning and Lifecycle, which provides stand-
ard ways to support version control of MOF models. The
work on MOF standardisation continues within OMG, build-
ing on this core set of MOF standards, and providing the
essential tools for the metadata manipulation that under-
pins MDA.

4 Which Modelling Language?

At the time MDA was first mooted, and even more so
today, most software modelling uses UML. By 2004 it was
estimated that more than 2/3 of all industrial applications

© Novatica

Model-Driven Software Development

used at least some UML during their specification phase,
with 82% of developers saying that they planned to use UML
in future [4]. Because of its ubiquity, it was clear from the
start that UML would be the language predominately used
for MDA. However, to help apply UML and MDA to the
widest-possible range of application areas, OMG is also
publishing a rapidly-expanding family of UML profiles
which extend and adapt UML to allow it to represent con-
cepts in specific application domains. Examples include:

m MARTE - AUML Profile for Modelling and Analy-
sis of Real-Time and Embedded systems.

m SysML - This extends UML to support modelling
of complex systems with human and hardware as well as
software components.

m EAIl - A UML profile for Enterprise Application In-
tegration.

m Testing — A UML profile defining a language for de-
signing, visualizing, specifying, analyzing, constructing and
documenting software test systems.

m \oice — A UML profile for modelling voice dialogs
in telecom applications.

In effect, each UML profile creates a customised Do-
main-Specific Language (DSL) for modelling concepts in
that domain. However, because each language is strongly
tied to the well-understood UML syntax and semantics, and
defined using UML’s standard extension mechanism, it’s
easier to learn than a language designed from scratch, and
can be used with existing and well-supported UML and
MDA tools.

Although UML and its profiles are the most widely-used
language for MDA, using UML is not actually an MDA
requirement; completely un-UML-like MOF-based model-
ling languages can be defined and used with MDA. One
recent example is Semantics of Business Vocabulary and
Business Rules (SBVR), a text-based language for repre-
senting business rules. Work is also underway to provide a
MOF foundation for Business Process Modelling Notation
(BPMN™), a popular flowchart-like syntax for creating busi-
ness process diagrams that represent the activities of a busi-
ness process and the flow of control that defines the order
in which they are performed.

5 Specifications Which Have Been Developed
Using MDA

Over the last seven years OMG has created numerous
specifications in a number of vertical domains using the
MDA approach. A few representative examples will give
the flavour of the variety of problems addressed:

m Microarray and Gene Experiment Object Model. A
Platform-Independent Model for the representation of life-
science gene expression data and relevant annotations, along
with a standard mapping onto an XML Document Type
Definition (DTD) for representing and exchanging this data
using XML [5].

m Product Lifecycle Management (PLM) Services. This
specification defines a PIM for standardised services for
use in managing and representing the different configura-

© Novatica

tions and versions a product may be sold under over its life-
time. The specification includes a PIM and a PSM for
WSDL/SOAP [6].

m PIM and PSM for Software Radio Components.
"Software Radio" is a generic term for radio receivers and
transmitters where some or all of the signal processing is
performed by software running on general-purpose proces-
sors, specialised Digital Signal Processors (DSP), or exotic
devices like Field Programmable Gate Arrays (FPGAS). This
five-volume specification provides both Domain-Specific
Languages (defined as UML profiles) for designing Soft-
ware Radios, and PIMs standardising parts of software ra-
dio designs. Mappings of these PIMs onto the PSMs for the
industry-standard CORBA-based Software Communication
Architecture (SCA) are also provided [7].

m Application Management and System Monitoring for
Combat Management Systems. This specification addresses
the problem of centralised management of CMS applica-
tions running on the wide variety of hardware and software
platforms found on modern warships. It includes a PIM and
PSMs for several widely-used platforms including CORBA,
DMTF CIM Managed Object Format and Data Distribu-
tion Service (DDS™) middleware, as well as defining a PSM
for exchange of management data using XML [8].

OMG’s web site has a full list of specifications devel-
oped using MDA [9].

6 MDA and Software Development

One important difference between creating
interoperability specifications and designing software is that
the latter almost always involves modifying and interfac-
ing with existing application code. Although this is often
dismissively termed "legacy integration”, as though it in-
volved working with a few quaint leftovers from a former
age, studies over the last 20 years have repeatedly shown
that IT users spend far more effort on modifying existing
software than on deploying "new" applications [10] [11]
[12]. The original cost of acquiring an application (whether
purchased or developed in-house) is often only 10-20% of
its Total Cost of Ownership (TCO) when software lifetimes
are measured in decades.

If using MDA for software development is going to help
achieve a meaningful reduction in TCO, it clearly has to
address the issue of maintaining and updating existing soft-
ware, since this can account for up to 90% of software’s
true cost.

One way that MDA reduces TCO is by creating new
application code with fewer bugs. Higher-quality code re-
sults in less effort later being spent on problem diagnosis
and remedies, making it easier to adapt the code to new
business needs, and lowering the costs to train and support
users of the system. An informal side-by-side study in 2006
comparing MDA with traditional hand-coding for a new
commercial billing application showed that MDA techniques
produced almost three times as many lines of code per dol-
lar spent, but with less than one third the defect rate discov-
ered during testing (1.1 defects per thousand lines of code

UPGRADE vol. Ix, No. 2, April 2008 9

Model-Driven Software Development

for MDA, 4.1 for traditional coding) [13]. Although the low-
ered coding costs are impressive, the higher code quality
will have a much greater impact on the system’s TCO over
its life.

Having models as a product of the development process
also helps lower the costs of making subsequent modifica-
tions to the system. Maintainers working on existing appli-
cations typically spend more than half of their time simply
trying to understand how the code works before they can
begin to modify it [14]. With MDA, the design models are
one of the products of application development, along with
the code itself, so maintenance involves modifying the
models and regenerating the corresponding parts of the code.
The savings in time spent understanding and then modify-
ing the code can be substantial. In early 2003 a side-by-side
laboratory study of maintenance of MDA-based and non-
MDA-based J2EE applications found that MDA increased
maintainers’ productivity by 37% compared to traditional
code-based maintenance [15].

MDA’s architects have also recognised that not all ap-
plications will have been developed this way, so there will
be times when a team equipped with MDA tools and skills
is faced with modifying an application for which no MDA
model exists. It is therefore essential that there’s some way
of recovering design information from existing software,
even where original designs have been lost (or even never
existed in the first place). Acknowledging this, OMG started
work on "Architecture Driven Modernisation” (ADM)
standards in 2003, two years after the MDA initiative be-
gan.

The first product of the ADM effort is the Knowledge
Discovery Metamodel (KDM) specification, which provides
standard metamodels for documenting and formally repre-
senting existing software assets and their operational envi-
ronments with MOF. KDM defines a common vocabulary
of knowledge related to software engineering artefacts, re-
gardless of the implementation programming language and
runtime platform (a checklist of items that a software min-
ing tool should discover and a software analysis tool can
use. KDM’s common MOF models and interchange format
provide an integration layer between the syntax-specific
parsers used to extract information from raw source code
and the analysis and transformation tools which process
abstract program structure information, thus allowing ex-
port and import of data currently contained within individual
software modernisation tools). In this way KDM can pro-
vide both a common platform to help integrate diverse soft-
ware modernisation tools, and also provide the basis for
bringing knowledge about existing software assets into the
MDA software creation process [16].

Independently of MDA, the KDM specification is also
finding application in the Software Assurance field, to help
analyse existing software to detect security vulnerabilities
and other ways in which it might behave outside its required
specification. As with software modernisation, many tools
are likely to be involved, each producing a portion of the
required knowledge about the software assets. KDM is also

10 UPGRADE vol. 1x, No. 2, April 2008

being used in the Software Assurance field as a standard
way of representing knowledge about software collected
via a variety of different tools.

Creating tools for recovering design knowledge from
existing software is a challenging problem, and OMG’s work
on standards in this area will continue for some time; for
instance, a forthcoming specification will standardise a
metamodel for Abstract Syntax Trees, to facilitate the analy-
sis, visualization and refactoring of application code below
the procedural level supported by KDM. However, the work
in this area is already yielding benefits in helping modify
and update existing application code, rather than merely
encapsulating it unchanged, and have new applications com-
municate with it at arms’ length, as too often happens to-
day.

7 The Future

As business users become increasingly dependent on
Information Technology to deliver products and services,
so problems caused by the inflexibility of IT systems be-
comes ever more pressing. Rather than adapting to the
changing needs of the businesses they supposedly serve, IT
systems’ capabilities increasingly dictate business policy.
Traditional software engineering techniques demand sta-
ble, well-defined requirements and long timescales for cre-
ating systems tailored to users’ needs, yet the business en-
vironment is changing with increasing speed. All the while,
an ever-growing deployed software base is accumulating
post-design modifications that distort its structure to the
point of "software death", where any further modification
(whether to fix a bug or introduce a new feature) in turn
introduces a new bug.

The convergence of MDA with Business Process Man-
agement (BPM) and Service Oriented Architecture (SOA)
offers a road-map for organisations seeking to escape the
straightjacket of software inflexibility.

BPM is an umbrella term for the techniques of identify-
ing, documenting and managing the complete end-to-end
processes an organisation uses to perform an individual task,
especially where this involves the cooperation of multiple
individuals, departments or separate organisations. The doz-
ens or hundreds of processes within an organisation typi-
cally have both human and IT components, and many of
the individual activities within any one process are also used
in conjunction with other activities in other processes. Just
as different organisations have different levels of maturity
in their software production processes, so business organi-
sations have different levels of business process maturity.
OMG’s Business Process Maturity Model (BPMM) [17]
helps organisations discover and improve the level of pre-
cision with which they understand their own processes.
Given well-understood processes, precise yet easily-learned
visual notations like SBVR and BPMN can be used to docu-
ment and communicate them between business stakeholders,
process participants and the engineers building software to
support them.

Service-Oriented Architecture is one of the foundations

© Novatica

Model-Driven Software Development

on which OMG’s technical architecture was built almost 20
years ago, but it has now gained new prominence as a
method of designing, deploying and managing the individual
activities that make up a business process. At the software
level, use of SOA entails building components with well-
defined meta-data that defines both the information they
require from each other and the services that they provide,
allowing tools to orchestrate the late binding of SOA serv-
ices into new processes as the needs of the organisation
change. MDA provides the vital bridge between BPM de-
sign and SOA infrastructure, allowing process models cap-
tured via MOF-based languages like SBVR, BPMN or UML
activity diagrams to be translated into that orchestration
code.

The convergence of model-driven software develop-
ment, service orientation and better techniques for docu-
menting and improving business processes holds out the
promise of rapid, accurate development of software that
serves, rather than dictates, software users’ goals.

8 Conclusion

Put in a historical context, MDA can be seen as the most
recent step in the progressive development of better and
more powerful tools for writing software over the 60 year
history of electronic data processing. The first programmers
write their applications directly in machine code, entering
the bit patterns for instructions from memory and calculat-
ing branch offsets and index register settings by hand. As-
semblers moved programmers one level of abstraction away
from the raw machine, then 3rd Generation Languages
(3GLs) and 4th Generation Languages (4GLs) each added
another level of tooling between the user and the raw ma-
chine, providing abstractions that are progressively closer
to the concepts used by the ultimate user of the IT system.
MDA continues this trend to better tools and increasing
abstraction. There has always been a fierce rearguard ac-
tion (clinging to the efficiency argument) to any increase in
the level of abstraction, but the flexibility, reduced com-
plexity and increased productivity of the abstractions have
always won through in the end [18]. MDA is proving to be
no exception.

References

[1] Gartner Group. "Middleware: what end users are buy-
ing and why", February 1999.

[2] Sun Microsystems. "Java Transaction Service 1.0
Specification", <http://java.sun.com/products/jts/>,
1999.

[3] OMG. "Object Transaction Service 1.2.1", <http://
doc.omg.org/formal/01-11-03>, 2001.

[4] A. Zeichick. " UML Adoption Making Strong
Progress"”, SD Times, 15th August 2004.

[5] OMBG. " Gene Expression Specification 1.1", <http://
doc.omg.org/formal/03-10-01>, October 2003.

[6] OMG. "Product Lifecycle Management Services 1.0.1",
<http://doc.omg.org/formal/06-04-03>, April 2006.

[7] OMG. "PIM and PSM for Software Radio Components

© Novatica

Specification 1.0", <http://doc.omg.org/formal/07-03-
01>, March 2007.

[8] OMG. "Application Management and System Moni-
toring for CMS Systems Beta 2 specification”, <http:/
/doc.omg.org/dtc/07-05-02>, May 2007.

[9] OMBG. Specification Catalogue, <http://www.omg.org/
technology/documents/spec_catalog.htm>.

[10] L. Erlikh. "Leveraging Legacy System dollars for E-
business”, IEEE IT Pro, May/June 2000.

[11] A. Eastwood. "Firm Fires Shots at Legacy Systems",
The Standish Group, 1993.

[12] J. Moad. "Maintaining the competitive edge",
Datamation 61-62, 64, 66., 1990.

[13] Steve Hudson. Private communication, 2006.

[14] B.P. Lientz, E. Swanson. "Problems in application soft-
ware maintenance”, Communications of the ACM 24
(11), 763-769, 1981.

[15] The Middleware Company. "Model Driven Develop-
ment for J2EE Utilizing a Model Driven Architecture
(MDA) Approach - Maintainability Analysis”, Janu-
ary 2004.

[16] OMG. " Architecture-Driven Modernization: Knowl-
edge Discovery Meta-Model 1.0 beta3", <http://
doc.omg.org/ptc/2007-03-15>, March 2007.

[17] OMG. "Business Process Maturity Model 1.0 betal”,
<http://doc.omg.org/dtc/2007-07-02>, July 2007.
[18] D. Otway. "Abstract & Automate", Architecture
Projects Management Ltd, <http://www.ansa.co.uk/

ANSATech/94/Primary/102001.pdf>, May 1994.

UPGRADE vaol. 1x, No. 2, April 2008 11

