
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editor: Rafael Fernández Calvo

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Golden Ratio" / © ATI 2008
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2008 (for the monograph)
© CEPIS 2008 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (June 2008)

"Next Generation
Technology-Enhanced Learning"

(The full schedule of UPGRADE is available at our website)

 Vol. IX, issue No. 2, April 2008

2 Editorial
New UPENET Partners — Niko Schlamberger (President of CEPIS)

2 From the Chief Editor’s Desk
Welcome to our Deputy Chief Editor — Llorenç Pagés-Casas
(Chief Editor of UPGRADE)

4 Presentation. MDA® at the Age of Seven: Past, Present and Future
— Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

7 A Brief History of MDA — Andrew Watson

12 MDA Manifestations — Bran Selic

17 The Domain-Specific IDE — Steve Cook and Stuart Kent

22 Model Intelligence: an Approach to Modeling Guidance — Jules
White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

29 Model Differences in the Eclipse Modelling Framework — Cédric
Brun and Alfonso Pierantonio

35 Model-Driven Architecture® at Eclipse — Richard C. Gronback
and Ed Merks

40 Model-Driven Web Engineering — Nora Koch, Santiago Meliá-
Beigbeder, Nathalie Moreno-Vergara, Vicente Pelechano-Ferragud,
Fernando Sánchez-Figueroa, and Juan-Manuel Vara-Mesa

46 From Informatik Spektrum (GI, Germany, and SI, Switzerland)
High Performance Computing
The TOP500 Project: Looking Back over 15 Years of Supercomputing
— Hans Werner Meuer

62 From Mondo Digitale (AICA, Italy)
Project Management
Critical Factors in IT Projects — Marco Sampietro

68 CEPIS Projects
Selected CEPIS News — Fiona Fanning

CEPIS NEWS

UPENET (UPGRADE European NETwork)

Monograph: Model-Driven Software Development
(published jointly with Novática*)
Guest Editors: Jean Bézivin, Antonio Vallecillo-Moreno, Jesús García-Molina,
and Gustavo Rossi

12 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

Keywords: Model-Driven Architecture (MDA), Model-
Driven Development (MDD), Object Management Group
(OMG).

1 Introduction
Almost four years ago, some of my colleagues at IBM

Rational and I co-authored an article entitled "An MDA
Manifesto", which was first published in the MDA Journal
and then again in the eponymous book by Frankel and Parodi
[1]. The primary intent was to articulate our shared vision
of model-driven development (MDD). IBM and its Rational
business unit in particular were pioneers in the application
of modeling methods to software development.

Jim Rumbaugh and Grady Booch, both of Rational (and
both of whom were authors of the Manifesto article), were
the primary designers of the Unified Modeling Language
(UML), much of it based on their industry-leading earlier
work in model-based object-oriented methodologies. Ra-
tional’s modeling tools were and still are market leading
MDD tools.

It is both interesting and instructive to reflect on that
vision in the light of subsequent practical experience with
MDD since the article was written. Has anything funda-
mental changed in the vision? What are the current states of
practice and adoption of MDD? What stands in the way
and how serious is it? The purpose of this article is to ex-
amine some of these issues and also to investigate potential
strategies that would enable broader application of MDD in
industry and a more comprehensive realization of the vi-
sion behind it.

It would have been ideal if all of the original authors
were involved in this assessment, but, due to a number of
operational reasons this was not feasible (for one, I have
since retired and have a bit more time at my disposal than
my co-authors). Nevertheless, I have maintained close con-
tact with all of them and, although I certainly cannot claim
to represent their views, I am confident that we share pretty
much the same vision and objectives outlined in the origi-
nal article.

2 The MDA Manifesto Revisited
A "manifesto" is an explicit declaration of set of princi-

MDA Manifestations

Bran Selic

In 2004 the author, along with several colleagues, published an article titled "An MDA Manifesto", which outlined a
strategic vision for Model-Driven Development (MDD). That article identified the key elements that characterized this
approach to software development and its value proposition. The present article contains an assessment of the progress
made since then towards fulfilling that vision, based on practical experience in applying MDD in industry. The key
impediments that are hindering a more extensive realization of that vision are identified and categorized. Finally, a long-
term strategy is outlined for overcoming these hurdles.

Author

Bran Selic is currently President of Malina Software Corp. In
2007, Bran retired from IBM Canada, where he was an IBM
Distinguished Engineer responsible for defining the strategic
direction for software modeling tools for the Rational brand.
He is currently the chair of the OMG task force responsible for
the UML standard. Bran is also an adjunct professor of computer
science at Carleton University in Ottawa, Canada.
<bselic@ca.ibm.com>.

ples and a plan of action for reaching some objectives. The
original article identified three keystones of the Model
Driven Architecture (MDA) initiative from the Object Man-
agement Group (OMG) [2], as interpreted by IBM’s tech-
nical team responsible for its MDD strategy. These were:

Use of higher levels of abstraction in specifying both
the problem to be solved and the corresponding solution,
relative to traditional software development methods (NB:
in the original article, this was referred to as "direct repre-
sentation").

Increased reliance on computer-based automation to
support analysis, design, and implementation.

Use of industry standards as a means facilitating
communications, product interworking, and technological
specialization.

The following is a brief summary of the nature and ra-
tionale of each of these key elements. Readers interested in
a more in-depth description should refer to the Manifesto
article itself.

2.1 The Issue
In essence, the primary problem that MDD is intended

to address is the often overwhelming complexity involved
in designing and implementing modern software. The mag-
nitude of this problem just keeps growing, as our demands
for more sophisticated functionality and more dependable
software increase (as Grady Booch notes, in some ways
"software runs the world" [3]). It is, therefore, critical for
us to understand the sources of this complexity lies and what
can be done about them.

UPGRADE Vol. IX, No. 2, April 2008 13© Novática

Model-Driven Software Development

In his seminal work on software development, "The
Mythical Man-Month" [4], Fred Brooks Jr. identifies two
kinds of complexity: essential complexity, which is inher-
ent to a particular problem and, consequently, unavoidable,
and arbitrary complexity, which is due to the methods and
tools used to address the problem. Brooks points out that
software designers face more than their share of arbitrary
complexity.

For example, they often have to cope with the idiosyn-
crasies of traditional programming languages, in which a
single uninitialized variable or misaligned pointer can have
disastrous consequences, whose impact can extend far be-
yond the localized context in which the error was made.
Similarly, many crucial and difficult to detect errors can be
introduced in the process of translating complex domain-
specific concepts into corresponding computer-program
implementations.

The basic motivation behind MDD can be reduced to
the elimination of arbitrary complexity, through the defini-
tion of improved methods and tools.

2.2 Abstraction
Abstraction is a primary technique by which human

minds cope with complexity. By hiding from view what is
irrelevant or of little consequence, a complex system or situ-
ation can be reduced to something that is comprehensible
and manageable. When it comes to software, it is extremely
useful to abstract away technological implementation de-
tail and deal with the domain concepts in the most direct
way possible. For instance, it is typically easier to view and
comprehend a state machine as a graph, rather than to see it
in the form of nested "case" statements in some program-
ming language rife with distracting low-level syntactical
details.

The MDD approach to increasing levels of abstraction
is to define domain-specific modeling languages whose
concepts closely reflect the concepts of the problem do-
main whilst minimizing or obscuring aspects that relate to
the underlying implementation technologies.

To facilitate communications and understanding, such
languages use corresponding domain-specific syntactical
forms. This often means using non-textual representations
such as graphics and tables, which more readily convey the
essence of domain concepts than text.

2.3 Automation
Automation is the most effective method for boosting

productivity and quality. Software, of course, is an excel-
lent medium for exploiting automation, since the computer
is in many ways the ideal machine for constructing com-
plex machines. In case of MDD, the idea is to utilize com-

puters to automate any repetitive tasks that can be mecha-
nized, tasks which humans do not perform particularly ef-
fectively. This includes, but is not limited to, the ability to
transform models expressed high-level domain-specific
concepts into equivalent computer programs, as well as into
different models suitable for design analyses (e.g., perform-
ance analyses, timing analyses). In case of executable
modeling languages computer-based automation can also
be used to simulate high-level models to help evaluate the
suitability of a proposed design in all stages of develop-
ment.

2.4 Standards
MDA is OMG’s initiative to support MDD with a set of

open industry standards. Such standards provide multiple
benefits, including the ability to exchange specifications
between complementary tools as well as between equiva-
lent tools from different vendors (thereby avoiding vendor
lock-in). Standards allow tool builders to focus on their prin-
ciple area of expertise, without having to recreate and com-
pete capabilities provided by other vendors. Thus, a per-
formance analysis tools need not include a model editing
capability. Instead, it can interact with a model editing tool
using a shared standard .

As part of MDA, the OMG has defined a basic set of
MDD standards for modeling languages (e.g., UML, MOF),
model transform definition (MOF QVT), MDD process
definition (SPEM), and a number of other areas. It is some-
what ironic that MDA is sometimes viewed as an approach
to MDD that is contrary to the domain-specific languages
approach, this is not the case, since many of the MDA stand-
ards are specifically designed to support specialization for
domain-specific needs. The MOF language, for instance, is
a language for defining domain-specific languages. Further-
more, UML can also be used to define different domain-
specific languages by taking advantage of its profile mecha-
nism. This not only allows reuse of the effort and ideas that
went into the design of UML but also enables the reuse of
existing UML tools. In many ways, this approach to do-
main-specific language design overcomes one of the major
barriers that has impeded such custom approaches in the
past: the lack of adequate tooling as well as the cost of main-
taining it and evolving it. Thus, it is possible to reap the
benefits of both standardization and customization.

3 The State of the Practice in MDA
While one can argue against concrete realizations of the

MDA idea, such as the technical features of UML or MOF,
it is hard to argue with any of its basic premises. Increasing
the levels of abstraction and automation and the use of stand-
ards, executed properly, are all undeniably useful. Further-
more, there have been numerous examples of successful
applications of MDA in large-scale industrial projects (cf.
[5] [6])1 . Yet, there is still a significant amount of contro-
versy about whether or not MDA is useful. It is fair to say
that the dominant perception among today’s software prac-
titioners is that MDA has yet to prove itself, or, at the ex-

1 On the other hand, many enterprises that have achieved suc-
cesses with MDD are inclined to keep them confidential in the be-
lief that their use of MDD is an important advantage they hold over
competitors.

14 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

treme end of the opinions scale, that it is a distracting aca-
demic fairy tale, concocted by software theologians who
are disconnected from any practical reality2 .

I am unaware of any published results, but my personal
estimate from numerous discussions with software devel-
opment teams in industry is that the penetration of model-
based methods hovers around 10%. If this stuff is really as
good as claimed, why isn’t everyone using it?

It turns out that there are numerous and varied reasons
for this glacial pace of adoption. They can be roughly clas-
sified into technical, economic, and cultural.

3.1 Technical Hurdles
A major problem that plagues many software products

these days is usability. In the case of MDA, it is mostly
manifested in MDA tools. Although often endowed with
diverse and very powerful functionality, such tools almost
invariably tend to be extremely difficult to learn and to use.
Users are typically faced with a bewildering spectrum of
menu items arranged in seemingly arbitrary groupings.
Common operations that should be easy to use often re-
quire complex and counterintuitive tool manipulations. One
of the reasons for this is that, ironically, many of the tool
designers and implementers are not themselves practition-
ers of MDD and, therefore, do not have a sense for how the
tools should look and behave.

Consequently, poor tool usability is one of the biggest
current impediments to greater penetration of MDD meth-
ods in practice.

A second major technical problem is that there is still
very little theoretical underpinning for MDD. Much of the
MDD technology that is available today was developed in
ad hoc ways by industrial teams who were trying to solve
specific problems in circumstances that do not afford the
luxuries of reflection and generalization. As a result, when
it comes to supporting MDD, we do not yet know precisely
what works, what does not, and why. The result is not only
gratuitous diversity but also substandard and inadequate
technologies. In contrast, traditional programming-oriented
methods and technologies have been studied amply and one
can rely on a sound body of theory to ensure that common
problems are avoided and solid and proven solutions are
chosen.

The lack of a sound theory of MDD is also manifested
in interoperability problems between MDD tools that often
result in highly undesirable vendor lock-in for users. This
is true even in the presence of standards.

3.2 Cultural Hurdles
Despite the availability of hard evidence of the success

of MDA in practice, there is still insufficient awareness of
its potential and its capabilities among practitioners who
could be exploiting it. However, even in cases where a
project team might be fully aware of the potential benefits
of applying MDD, there is still a problem in adopting it due
to the inevitable overheads whenever new methods and tools
are introduced into a running production environment. It
takes time to learn and adjust to new ways of working (not
to mention that it may be necessary to support the old and
the new methods and tools during phased cutovers). In to-
day’s highly competitive environment, where time-to-mar-
ket is a fundamental driver of development, this overhead
is difficult to accept, since the investment payback is gener-
ally deferred to subsequent projects.

However, perhaps the most difficult issue to overcome
of all is the conservative mindset of many software practi-
tioners. Because they tend to invest vast amounts of time
and effort in mastering specific implementation technolo-
gies (which, due to their often arbitrary complexity, do re-
quire significant investment), many practitioners define their
expertise in terms of computing technologies they have
mastered rather than the domain in which they are working.
For instance, they are much more likely to view themselves
as, say, J2EE experts rather than as financial software ex-
perts. Consequently, there is often major resistance to tech-
nological change, even if the new technology could lead to
better solutions for the specific domain problem on which
they are working. This same technology-centered culture
means that many software developers have a very superfi-
cial interest in and understanding of how the products they
implement are to be used, which, in turn, leads to poor prod-
uct usability discussed above.

One major barrier in overcoming all such cultural is-
sues is the sheer number of software practitioners, which is
estimated between 10 and 15 million [7]. This is, of course,
a huge inertial mass that is very difficult to shift from its
present cultural base.

3.3 Economic Hurdles
Today’s prevailing business environment is focused on

relatively short-term return on investment (ROI). Public
companies report their results on a quarterly basis and a
failure to meet profit expectations in a given quarter is likely
to result in a falling stock prices and a shift of stockholders
to other apparently more immediately profitable businesses.
This has the unfortunate effect that most investment in tech-
nological development tends to be short-term. Consequently,
it is hard to justify longer-term investments in new soft-
ware development methods and tools, particularly if the
payback is not guaranteed. And, to be fair, switching to MDD
does not guarantee success, partly because of the other is-
sues discussed above. For example, the risks of introducing
MDD into a software development organization can be
greatly mitigated if it is led by individuals with prior expe-
rience. Unfortunately, such expertise is still quite difficult
to find and secure. And, with the aforementioned absence
of a systematic foundation for MDD, organizations are of-

2 Steve Mellor tells the following anecdote that epitomizes the cur-
rent state of affairs in MDA: When he was asked over ten years
ago about when he expected MDA to become mainstream, he sug-
gested that it would likely happen within the following year and a
half to two. And he has been giving the same answer to that ques-
tion ever since.

UPGRADE Vol. IX, No. 2, April 2008 15© Novática

Model-Driven Software Development

ten left to fend for themselves through a risky process of
trial and error.

Clearly, these are all substantial barriers to overcome
and it seems likely that the pace of introduction of MDD in
industrial practice will remain a slow for several years to
come. In the next section, we describe some initiatives that
could help accelerate this trend.

4 The Way Forward
There are at least three possible areas in which to ad-

dress the problem of increasing the penetration of MDD in
practice:

Education
Research
Standardization

4.1 Education
Given the difficulties of changing the dominant tech-

nology-centric culture noted above, it is necessary to initi-
ate such change through education, starting at the under-
graduate level. This means instilling an understanding and
respect for users among software engineering students. A
primary need is comprehending the value that the product
to be developed has for its customers and users. That, in
turn, typically requires an understanding of the economic
and business context of the product. In other words, what is
needed is insight that extends beyond the immediate tech-
nological issues. Software engineering graduates must have
an understanding and working knowledge of economic and
business factors that influence what they design and build3 .
As Charles Babbage put it: "It is doubly important for the
man of science to mix with the world".

In addition, designing software products that are used
by people requires an understanding of human psychology.
At present, the prevailing attitude among software devel-
opers seems to be that human factors constitute a second-
order concern, to be addressed by user-interface design spe-
cialists once the main system architecture has been final-
ized. Often this is viewed as a mere matter of designing
suitable graphical interfaces and menu items. The under-
standing that usability requirements might have a funda-
mental impact on the architecture of a software system is
still rare among software professionals.

Last but not least, it is necessary to increase the intro-
duction of MDD methods into software engineering educa-
tion. Most current undergraduate curricula already include
some basic elements of model-based engineering, such as
courses on UML. But, with no systematic theoretical foun-
dation on which to base this, the results are often haphazard
and inadequate. To address that, more research is needed
into the theory behind MDD.

4.2 Research
The research community has embraced the notion of

MDD, partly because they see it is an opportunity to effect
a dramatic sea change in software technology. For exam-
ple, modeling languages can be designed to avoid the arbi-
trary complexity of current programming languages. This
complexity is sometimes a barrier to the application of
highly-effective engineering methods, such as the use of
mathematical analyses to predict key system characteris-
tics before the system is constructed. All too often in soft-
ware, such characteristics remain unknown until the com-
plete system is designed and built, at which point the cost
of redesign can be prohibitive. New modeling languages
can be designed that are specifically designed to support
such analyses.

Yet, despite the eagerness with which researchers have
accepted MDD, there are some issues with the current re-
search efforts. One of them is that much of the research
focuses on particular point problems, in large part because
research funding is provided by industrial partners who are
primarily interested in solving their immediate problems.
Consequently, there is insufficient exploration of the theo-
retical foundations of MDD. What is needed, therefore, is
an overall map of the MDD research space in which the
various areas of exploration are clearly identified as are the
relationships between them. Only when this is properly
understood will we be able to talk of a comprehensive and
systematic theory of MDD.

One recent initiative is intended to deal with this issue:
the newly formed Centre of Excellence for Research in
Adaptive Systems (CERAS) [8]. This is a multi-year re-
search effort organized and funded by the Ontario Centres
of Excellence (specifically, its Centre for Communications
and Information Technology) and the IBM Center for Ad-
vanced Studies, with the objective of exploring the
foundational issues behind a number of related emerging
computing technologies, including MDD. One of its pri-
mary objectives in the domain of MDD is to define a com-
prehensive framework for MDD research (the research map
mentioned above). Another key objective is to provide a
communal focal point and a kind of clearinghouse for MDD
research worldwide. In addition to exploring the founda-
tions of MDD, CERAS will be doing research in the fol-
lowing areas (and, likely, others):

Modeling language semantics and design (includ-
ing domain-specific languages).
Model transformations (including model-to-model
and model-to-code).
Model analysis (safety and liveness property check-
ing).
Model-based verification.
Model management.
MDD methods and processes.
MDD tooling.

4.3 Standards
The role of standards, de facto or de iure, is key to the

3 One additional benefit of a broader education is an understand-
ing when technological solutions are appropriate and when they
are not. There are many examples when technological solutions
have created more problems than they solved.

16 UPGRADE Vol. IX, No. 2, April 2008 © Novática

Model-Driven Software Development

success of any widely used technology. Standardization will
not only allow the distilling of proven results in a vendor-
neutral manner, it will also facilitate specialization by pro-
viding a common foundation for interworking between
specialties. Standardization bodies, such as the OMG are
not only useful, but necessary. However, given the highly
competitive nature of the industry and the unprecedented
flexibility of software, it is difficult to expect software ven-
dors to voluntarily conform to standards. Therefore, users
of MDD tooling and software professionals in general
should do their utmost to pressure vendors to contribute
and adhere to software standards

Clearly, there should be a close link between research,
industry, and standards bodies. It is critical that only things
that are both well understood and proven in practice be
standardized. Premature standardization can be counterpro-
ductive.

5 Summary and Conclusions
MDD has the potential to provide significant improve-

ments in the development of software. It is based on sound
and time-proven proven principles: higher levels of abstrac-
tion, higher levels of automation, and standardization. Fur-
thermore, there are numerous verifiable examples of suc-
cessful applications of MDD in industrial practice, that are
existence proofs of its viability and value. Yet, the use of
MDD is still an exception rather than the norm. This is due
to the not insignificant hurdles that need to be overcome.
Although many of these are technical in nature, what may
be surprising to some is that the most difficult hurdles to
overcome are the ones stemming from the current idiosyn-
cratic culture of software development. This culture places
far too much emphasis on technology and not enough on
technology users and their needs. It is a very pervasive cul-
ture that is sustained in part by the current business climate
that is heavily focused on short-term gain and, thus, dis-
courages investment in new methods and tools.

In such circumstances the best that can be expected is a
gradual introduction of MDD, facilitated primarily through
changes in educational curricula and investment in
foundational research. Software engineers must be much
better educated in human factors and the workings of the
marketplace; they should view technology more as a tool
rather than as an end unto itself. At the same time, we need
to research and develop a systematic theory of MDD, to
ensure that the corresponding technology and methods are
well understood, useful, and dependable.

References
[1] G.. Booch et al. "An MDA Manifesto", en Frankel, D.

and Parodi, J. (eds.) The MDA Journal: Model Driven
Architecture Straight from the Masters. Meghan-Kiffer
Press, Tampa, Florida, 2004 (pp. 133-143).

[2] OMG. MDA Guide (version 1.0.1), OMG document
number omg/03-06-01, <http://www.omg.org/docs/
omg/03-06-01.pdf>, 2003.

[3] G. Booch. Saving Myself. <http://booch.com/architec-

ture/blog.jsp?archive=2004-00.html>, July 22, 2004.
[4] F. Brooks. The Mythical Man – Essays on Software

Engineering (Anniversary edition). Addison-Wesley,
1995. ISBN: 0201835959.

[5] OMG. MDA Success Stories (web page). <http://
www.omg.org/mda/products_success.htm>.

[6] N.J. Nunes et al. Industry Track papers in UML
Modeling Languages, and Applications – 2004 Satel-
lite Activities (Revised Selected Papers), Lisbon, Por-
tugal, October 2004, Lecture Notes in Computer Sci-
ence, vol. 3297, Springer-Verlag, 2005 (pp. 94-233).
ISBN: 3540250816.

[7] IDC. The 2007 Worldwide Professional Developer
Model. IDC document number #207143. <http://
www.idc.com/getdoc.jsp?containerId=207143>, 2007.

[8] Ontario Centres of Excellence (OCE). Centre of Ex-
cellence for Research in Adaptive Systems (CERAS).
<https://www.cs.uwaterloo.ca/twiki/view/CERAS/
CerasOverview>.

