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A Model-free Periodic Adaptive

Control for Freeway Traffic

Density via Ramp Metering
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Abstract In this paper, a novel model-free periodic adaptive
ramp metering scheme is presented for a freeway traffic system,
which can be formulated as a general MIMO nonlinear system.
The proposed method is model-free in nature, and the control in-
puts and the pseudo Jacobi parameters are updated periodically
in a pointwise manner over the entire period, by directly using
the I/O data obtained in the preceding periods. The geometri-
cal tracking performance is shown with rigorous analysis. The
simulation results illustrate the validity of the proposed method.
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Ramp metering has been recognized as one of the most
effective ways for combating freeway congestion[1], which
is a typical regulating problem, and a number of control
methods have been exploited[1−3]. However, these meth-
ods are model-based and require the exact model of the
control system; thus they are difficult to design and con-
struct for general nonlinear processes. In fact, the freeway
traffic flow system is nonlinear, coupled, and uncertain, and
its accurate model is hardly available in practice. Hence,
we need a simple and robust control method that is insen-
sitive to modeling uncertainties and suitable for nonlinear
dynamics. Recently, Hou et al.[4] developed a new dynami-
cal linearization method by introducing a concept of pseudo
partial derivative (PPD) and proposed a model-free adap-
tive control (MFAC) scheme for general nonlinear systems.
As a data-driven method in nature, it has received increas-
ing attention from the control community[5−6].

It is worth pointing out that macroscopic traffic flow pat-
terns are in general periodic everyday[7]. Ruling out the
occasional occurrence of accidents, the routine traffic flow
on freeway in the macroscopic level will show the inherent
periodicity every day. In fact, the traffic periodicity is im-
plicitly assumed in all fixed-time traffic control methods.
However, the above-mentioned control approaches[1−6] are
lack of the capability of learning from recurrent traffic pro-
cesses to improve the tracking performance.

Considering the periodic or repetitive reference signals,
recently some periodic adaptive control methods[8−10] have
been proposed by means of the pointwise integral mecha-
nism with the goal of ensuring the tracking/disturbance re-
jection of periodic references/disturbances. However, most
of them focus on the cases in which the nonlinear plant
dynamics can be linearly parameterized and the periodic-
ity of parametric uncertainties must be known as a pri-
ori, which hinders further practical applications of these
approaches[8−10].
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In this paper, we introduce the basic ideas of periodic
adaptive control and MFAC into a general MIMO non-
linear freeway traffic control system, where the only prior
knowledge required is that the desired trajectory is periodic
with a known periodicity. As a result, a novel model-free
periodic adaptive control (MFPAC) approach is presented
for on-ramp metering. The main distinct features of this
method are summarized as follows:

1) It is model-free and only the I/O data of the cor-
responding point in previous periods, instead of previous
time instances, is used to update the estimate of pseudo
Jacobi matrix and the control input signal. Analogously,
the convergence is exponential with respect to the number
of periods, instead of the time instances.

2) The only prior knowledge required for the proposed
method is the periodicity of the desired trajectory (e.g., the
desired density and the mean speed of the freeway traffic
flow). Obviously, it is much easier to classify the given
known desired trajectories into periodic vs. nonperiodic
ones.

1 Problem formulation and dynamical lin-
earization

1.1 Traffic flow

The spatial and time-discretized traffic flow model[2] for
a single freeway with one on-ramp and one off-ramp on each
section is shown in Fig. 1.

Fig. 1 Segments on a freeway with on/off ramp

Its formulation is given as follows:

ρi(t + 1) = ρi(t) +
N

Li
[qi−1(t)− qi(t) + ri(t)− si(t)] (1)

qi(t) = ρi(t)vi(t) (2)

vi(t + 1) = vi(t) +
N

τ
[V (ρi(t))− vi(t)]+

N

Li
vi(t)[vi−1(t)− vi(t)]− νT

τLi

ρi+1(t)− ρi(t)

ρi(t) + κ

(3)

V (ρi(t)) = Vfree

(
1− ρi(t)

ρjam

l
)m

(4)

where N is the sample time interval; t ∈ {0, 1, · · · ,∞}
is the t-th time interval; i ∈ {1, · · · , I} is the i-th sec-
tion of a freeway, and I is the total number of sections;
ρi(t) (veh/lane/km) is the traffic density; vi(t) (km/h) is
the mean traffic speed; qi(t) (veh/h) is the traffic flow leav-
ing section i and entering section i + 1; ri(t) (veh/h) is
on-ramp traffic volume; si(t) (veh/h) is off-ramp traffic vol-
ume, which is regarded as an unknown disturbance; Li(km)
is the length of freeway section; vfree and ρjam are the free
speed and the maximum possible density per lane, respec-
tively; τ, γ, κ, l, m, and ω are constant parameters that
reflect particular characteristics of a given traffic system
and depend on the freeway geometry, vehicle characteris-
tics, drivers′ behaviors, etc.
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Remark 1. The macroscopic traffic flow model (1) ∼
(4) in this paper only serves to formulate the traffic control
problem more clearly and to provide a simulation evalu-
ation. The design and analysis of the MFPAC does not
require any information of the traffic flow model as shown
in the following sections.

The boundary conditions of freeway traffic flow are sum-
marized as: ρ0(t) = q0(t)/v1(t), v0(t) = v1(t), ρI+1(t) =
ρI(t), and vI+1(t) = vI(t).

1.2 General nonlinear representation and some
assumptions

With the state space, we can also express the traffic dy-
namics (1) ∼ (4) in a general nonlinear form[1]

xxx(t + 1) = fff [xxx(t), rrr(t), ddd(t)] (5)

where the state vector xxx(t) ∈ Rn comprises all traffic den-
sities and mean speeds, as well as all ramp queues; the
control vector rrr(t) ∈ Rm comprises all controllable ramp
volumes; the disturbance vector ddd(t) ∈ Rp comprises all
on-ramp demands and turning rates; fff [·, ·, ·] ∈ Rn is an
unknown vector valued function.

Assumption 1. The target trajectory xxxd(t) of the de-
sired traffic density and velocity, is periodic with a known
common periodicity T > 1, i.e. xxxd(t) = xxxd(t− T ).

Assumption 2. The partial derivative of fff [·, ·, ·] with
respect to control input rrr(t) is continuous.

Assumption 3. System (1) is generalized Lipschitz, i.e.,
∀t and ∆rrr(t) 6= 0,

‖∆xxx(t + 1)‖ ≤ M‖∆rrr(t)‖ (6)

where M is a constant, ∆xxx(t+1) = xxx(t+1)−xxx(t−T +1),
and ∆rrr(t) = rrr(t)− rrr(t− T ).

Remark 2. Assumption 3 can be seen as some limita-
tion to the rate of the change of the system output. It im-
plies that the finite variation of the on-ramp traffic volume
does not cause an infinite variation of the traffic density.
Clearly, it holds in practice. Furthermore, we just need the
existence of such a constant M without requiring the exact
value.

1.3 Dynamical linearization

Theorem 1. For system (5) satisfying Assumptions
1 ∼ 3, there must exist a parameter matrix Φ(t), called
pseudo Jacobi matrix, such that when ‖∆rrr(t)‖ 6= 0,

∆xxx(t + 1) = Φ(t)∆rrr(t) (7)

and ‖Φ(t)‖ ≤ M with M is defined in Assumption 3.
Proof. From system (5), we have

∆xxx(t + 1) =

fff [xxx(t), rrr(t), ddd(t)]− fff [xxx(t− T ), rrr(t− T ), ddd(t− T )] =

fff [xxx(t), rrr(t), ddd(t)]− fff [xxx(t), rrr(t− T ), ddd(t)]+

fff [xxx(t), rrr(t−T ), ddd(t)]−fff [xxx(t−T ), rrr(t−T ), ddd(t−T )] =

∂fff∗

∂rrr(t)
∆rrr(t) + fff [xxx(t), rrr(t− T ), ddd(t)]−

fff [xxx(t− T ), rrr(t− T ), ddd(t− T )] (8)

where ∂fff∗
∂rrr(t)

=




∂f∗1
∂r1(t)

∂f∗1
∂r2(t)

· · · ∂f∗1
∂rm(t)

∂f∗2
∂r1(t)

∂f∗2
∂r2(t)

· · · ∂f∗2
∂rm(t)

...
...

. . .
...

∂f∗n
∂r1(t)

∂f∗n
∂r2(t)

· · · ∂f∗n
∂rm(t)



∈ Rn×m

is a matrix of the proper partial derivative values of fff [·, ·, ·]

with respect to rrr(t) at some point in the time interval be-
tween t and (t− T ).

Let ξξξ(t) = fff [xxx(t), rrr(t−T ), ddd(t)]−fff [xxx(t−T ), rrr(t−T ), ddd(t−
T )]. Consider an equation with matrix Ξ(t) ∈ Rn×m as
follows

ξ(t) = Ξ(t)∆rrr(t) (9)

When ‖∆rrr(t)‖ 6= 0, we must have the solution Ξ(t) =
ξξξ(t)∆rrrT(t)/(∆rrrT(t)∆rrr(t)) for (9).

Let Φ(t) = ∂fff∗
∂rrr(t)

+Ξ(t), (7) can be obtained directly from

(8) and (9). In terms of Assumption 3, we have ‖Φ(t)‖ ≤
M . ¤

2 Model-free periodic adaptive controller
for on-ramp metering

2.1 Controller design

Given a target trajectory xxxd(t) of the desired traffic den-
sity and velocity with the known period T , the control tar-
get is to find a sequence of appropriate ramp volumes rrr(t)
such that the tracking error eee(t) = xxxd(t)−xxx(t) converges to
zero over the entire period as the period number approaches
to infinity.

Define an index function of control input as

J(rrr(t)) = ‖eee(t + 1)‖2 + λ‖rrr(t)− rrr(t− T )‖2 (10)

where λ is a positive weighting factor.
Using the optimal condition 1

2
∂J

∂rrr(t)
= 0, and according

to (7), we have

rrr(t) = rrr(t− T ) +
ηΦT(t)

λ + ‖Φ(t)‖2eee(t− T + 1) (11)

where η > 0 is a step-size constant series, which is added to
have the generality of the algorithm (11) and will be used
in stability analysis later.

Because Φ(t) is unknown and not available, we present
the periodic learning control law as

rrr(t) =





rrr(t− T ) +
ηΦ̂T(t)

λ + ‖Φ̂(t)‖2 eee(t− T + 1),

t ∈ {T, T + 1, · · · }
rrr0, t ∈ {0, · · · , T − 1}

(12)

where rrr0 denotes the initial input values in the first period,

and Φ̂(t) is to learn parameter Φ(t) and updated in terms
of the optimal solution of the following criterion index func-
tion

J(Φ̂(t)) = ‖∆xxx(t− T + 1)− Φ̂(t)∆rrr(t− T )‖2+
µ‖ bΦ̂(t)− Φ̂(t− T )‖2 (13)

Using the optimal condition ∂J

∂Φ̂(t)
= 0, we can obtain

the parameter updating law as follows

Φ̂(t)=





Φ̂(t− T )+

β[∆xxx(t−T +1)−Φ̂(t−T )×∆rrr(t−T )]∆rrrT(t−T )

µ+‖∆rrr(t−T )‖2 ,

t ∈ {T, T + 1, · · · }
Φ̂0, t ∈ {0, · · · , T − 1}

(14)
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where µ > 0 is the positive weighting factor, β ∈ (0, 2) is
a step-size constant series added to make the generality of

the algorithm (14), and Φ̂0 can be chosen arbitrarily.
In order to ensure the condition ‖∆rrr(t)‖ 6= 0 holds for

any t, and periodic estimate algorithm (14) has stronger
ability in tracking performance, we present a reset algo-
rithm as follows:

Φ̂(t) = Φ̂0, if ‖Φ̂(t)‖ ≤ ε or ‖∆rrr(t)‖ ≤ ε (15)

where ε is a small positive constant.
Remark 3. It should be noted that in theory,

‖∆rrr(t)‖ → 0 as t →∞ by the proposed method. However,
in control practice, a perfect tracking is never achieved due
to the influence of disturbances and some other factors.
Thus, the contradiction of (15) with the theory results can
be neglected in practice.

Remark 4. For the proposed MFPAC (12), (14), and
(15), what we need is to tune the parameters η and β in a
small range with properly fixed values of λ and µ, without
requiring any priori knowledge of the dynamic system.

2.2 Convergence analysis

Assumption 4. The pseudo Jacobi matrix Φ(t) is posi-
tive (or negative) for all t and Φ(t) = 0 holds only for some
finite time points.

Remark 5. This assumption is similar to the limitation
of control input direction. For example, the traffic flow
density will increase (or not decrease at least) when the
on-ramp metering traffic volume increases in practice.

Theorem 2. For freeway traffic control system (5) satis-
fying Assumptions 1 ∼ 4, the presented model-free periodic
adaptive control (12), (14), and (15) can guarantee that:

1) The parameter estimation value Φ̂(t) is bounded;
2) The tracking error eee(t) converges to zero exponentially

and point-wisely as t approaches to infinity.
Proof. The proof consists of two parts. Part 1 derives

the boundedness of Φ̂(t). Part 2 proves the asymptotic
convergence of the tracking error.

Part 1. The Boundedness of Φ̂(t).

Case 1. For t ∈ {0, · · · , T − 1}, clearly Φ̂(t) is bounded.
Case 2. For t ∈ {T, T + 1, · · · }, first when ‖∆rrr(t)‖ ≤ ε,

clearly Φ̂(t) is bounded according to (15). When ‖∆rrr(t)‖ >
ε, subtracting Φ(t) from both sides of (14), we have

Φ̃(t) =

(
1− β∆rrr(t− T )∆rrrT(t− T )

µ + ‖∆rrr(t− T )‖2
)

Φ̃(t− T )−

(Φ(t)− Φ(t− T )) (16)

where Φ̃(t) = Φ̂(t)− Φ(t).
Let ∆Φ(t) = Φ(t)−Φ(t−T ). Substituting (7) into (16),

we have

‖Φ̃(t)‖ ≤
∥∥∥1− β∆rrr(t− T )∆rrrT(t− T )

µ + ‖∆rrr(t− T )‖2
∥∥∥‖Φ̃(t− T )‖+ 2M

(17)
Noting that for ‖∆rrr(t)‖ > ε, µ > 0, and β ∈ (0, 2), we

have

0 <

∥∥∥∥1− β∆rrr(t− T )∆rrrT(t− T )

µ + ‖∆rrr(t− T )‖2
∥∥∥∥ ≤ d1 < 1 (18)

For any t ∈ {pT, pT + 1, · · · , (p + 1)T − 1} and noticing
t0 = t− pT , we have

‖Φ̃(t)‖ ≤ d1‖Φ̃(t− T )‖+ 2M ≤ · · · ≤ dp
1‖Φ̃(t0)‖+

2M

1− d1

(19)

Since t0 ∈ {0, · · · , T − 1} and when t → ∞, p =
(t− t0)/T →∞, according to (19),

lim
p→∞

‖Φ̃(t)‖ ≤ lim
p→∞

dp
1 max

t0∈{0,··· ,T−1}
{‖Φ̃(t0)‖}+

2M

1− d1
≤

max
t0∈{0,··· ,T−1}

{‖Φ̃(t0)‖}+
2M

1− d1
(20)

Hence, Φ̃(t) is bounded. Because ‖Φ(t)‖ ≤ M , then Φ̂(t)
is bounded for all t.

Part 2. The exponential convergence.
For any t ∈ {T, T +1, · · · }, the dynamics of the tracking

error can be expressed as follows in terms of (7)

‖eee(t + 1)‖ = ‖xxxd(t + 1)− xxx(t + 1)‖ =

‖xxxd(t− T + 1)− xxx(t− T + 1)− Φ(t)∆r(t)‖ =

‖eee(t− T + 1)− Φ(t)∆rrr(t)‖ ≤
∥∥∥1− ηΦ(t)Φ̂T(t)

λ + ‖Φ̂(t)‖2
∥∥∥‖eee(t− T + 1)‖ =

d2(t)‖eee(t− T + 1)‖ (21)

where d2(t) = ‖1− ηΦ(t)Φ̂T(t)

λ+‖Φ̂(t)‖2 ‖.
For any t ∈ {pT, pT +1, · · · , (p+1)T−1} and t0 = t−pT ,

we have

‖eee(t + 1)‖ ≤
p∏

i=1

d2(t0 + kT )‖eee(t0 + 1)‖ ≤
p∏

i=1

d2(t0 + kT ) max
t0∈{0,··· ,T−1}

{‖eee(t0 + 1)‖} (22)

From Assumption 4 and resetting algorithm (15), we

know that Φ(t)Φ̂T(t) is nonnegative, and Φ(t)Φ̂T(t) = 0
only holds at some finite time instants. Thus, except
for these finite instants where d2(t0 + kT ) = 1, we can
choose η and λ appropriately such that ∀k = 1, 2, · · · and
∀t0 ∈ {0, · · · , T − 1}, 0 < d2(t0 + kT ) < 1 strictly holds.

Since t0 ∈ {0, · · · , T − 1} and when t → ∞, p =
(t− t0)/T →∞, according to (22)

lim
t→∞

‖eee(t + 1)‖ ≤

lim
t→∞

p∏
i=1

d2(t0 + kT ) max
t0∈{0,··· ,T−1}

{‖eee(t0 + 1)‖}

(23)

Since ∀k = 1, 2, · · · and ∀t0 ∈ {0, · · · , T−1}, 0 < d2(t0+
kT ) < 1 strictly holds, we have limt→∞

∏p
k=1 d2(t0+kT ) =

0. Also, because initial error eee(t0 + 1), t0 ∈ {0, · · · , T − 1}
is bounded, clearly (23) implies that eee(t) → 0 as t →∞.

¤

3 Simulation study
In order to verify the effectiveness of the MFPAC ap-

proach, consider a freeway subdivided into 12 sections, and
the length of each section is 0.5 km. Assume there is an
on-ramp located in section 7 and one off-ramp located on
section 4. For all the sections, the initial density and the
initial mean speed are 30 veh/lan/km and 50 km/h, respec-
tively. Other parameters used in this model are listed as:
Vfree = 80 km/h, ρjam = 30 veh/lane/km, l = 0.5, m = 1.7,
κ = 13, τ = 0.01, N = 0.00417 h, γ = 35, ri(t) = 0 veh/h,
and α = 0.95.

The exiting flow s(t) in the off-ramp is regarded as a
large exogenous disturbance in the simulation. Also to
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show the sensitivity of the proposed control law to the
random disturbances, a random disturbance uniformly dis-
tributed on the interval (−15, 15) is added to the ini-
tial traffic flow on the mainstream for all the time in-
stants, that is the initial traffic volume entering section
1 is 1 500(1 + 0.01 randn) veh/h, where the randn function
generates arrays of random numbers whose elements are
normally distributed with mean value 0, variance 1, and
standard deviation 1.

The control objective is to apply the proposed model-free
periodic adaptive control mechanism to generate a proper
value of ri(t) to drive the traffic density ρi(t) track the
desired traffic density ρi,d(t) = 30 + 3 sin(tπ/25) with the
disturbances occurring at on-ramp and off-ramp. Clearly,
the desired traffic density is periodic with a known period-
icity T = 50N , where N=0.00417 h is the sampling time.

Through substantial simulations, the parameters of the
proposed model-free periodic adaptive control are chosen
as: η = 16, β = 0.0001, µ = 0.01, λ = 0.001, ε = 0.00005.
By using |ek,i|sup to record the maximum absolute track-
ing error of section i during the k-th period, i.e. |ek,i|sup =

sup
t∈{(k−1)T,··· ,kT−1}

|ρi(t)− ρd,i(t)|, k = 0, 1, 2, · · · , the learn-

ing convergence of MFPAC is shown in Fig. 2.
For the purpose of comparison, we also apply the model-

free adaptive control method to the freeway traffic density
control as done in [6]. Fig. 3 shows the learning convergence
of MFAC vs. period number.

From the simulation results, we can see that the proposed
MFPAC has the ability of learning from the corresponding
point in previous periods, as a result, the maximum abso-
lute tracking error over the entire period converges to zero
in a pointwise manner as the period number approaches to
infinity (Fig. 2). While by virtue of no learning from pre-
ceding periods, the traditional MFAC performs poorly for
the periodic tracking task (Fig. 3).

Fig. 2 The convergence of maximum tracking
error in section 7 by using the proposed MFPAC

Fig. 3 The convergence of maximum tracking
error in section 7 by using the traditional MFAC

Remark 6. The mean speed of traffic flow is strictly
related to the traffic density. Thus, we can just control the
traffic density to improve the transportation capability of
the freeway system.

4 Conclusion
In this paper, a novel model-free periodic adaptive con-

trol approach is presented for freeway traffic control by tak-
ing the advantage of its distinct feature of periodicity. It
is model-free without requiring any other knowledge of the
system except for the I/O data. The proposed method is
updated by the I/O data derived from the corresponding
point in previous periods; thus it has the ability of learn-
ing from preceding periods and performs well for periodic
tracking tasks. Both convergence analysis and simulation
results illustrate the validity of the presented methods.
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