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Abstract

Analytically control term has been determined to control chaos in
the problem of a satellite. Computational studies reveal the suppression
of chaos which is in good agreement with the analytical investigations.
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1 Introduction

During the last decade or so, since chaos can be harmful in several contexts
therefore much attention has been paid to the studies of chaos control. The
meaning of control here is to reduce or suppress chaos by means of a pertur-
bation so that the original structure of the system under investigation is kept
unaltered [4, 6]. To suppress chaos is a long-standing and extremely interesting
problem in several branches of physics and other disciplines.

Elliptically orbiting planer oscillations of satellites in the solar system make
an interesting study, and significant contributions to this end can be found in
the work of, e.g. Maciejewski [6], Singh and Demin [9], Singh [8], and Khan
[5], all of whom have studied the influence of certain perturbative forces such
as solar radiation pressure, tidal force and air resistance. In the present work,
we consider the spin-orbit coupling problem for a satellite, and in the equation
of motion we address the effect of solar radiation pressure and tidal torque.
This type of model is generally used for investigation of the rotational motion
of natural satellites. We use control theory of Hamiltonian system based on
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[2, 3] to achieve control of chaos in the system. In dynamical systems, the
Hamiltonian ones are difficult to control due to their special geometry and
the absence of phase space attractors. In this article, the problem we address
is how to suppress or control the chaos arising in Hamiltonian system of the
satellite. We have employed the method of control of chaos based on [1]. For
the perturbed Hamiltonian H = H0 + eV , we compute analytically the control
term f of order o(e2) such that H = H0 + eV + f has more regular behaviour
than the original system.

2 Control Theory of Hamiltonian Systems

Let A be the Lie algebra of real functions defined on phase space. For H ∈ A,
let {H} be the linear operator action on A such that

{H}H ′ = {H, H ′},
for any H ′ ∈ A where {., .} is the Poisson bracket. The time-evolution of a
function V ∈ A following the flow of H is given by

dV

dt
= {H}V,

which is formally solved as

V (t) = et{H}V (0),

if H is time independent, and where

et{H} =
∞∑

n=0

tn

n!
{H}n.

Any element V ∈ A such that {H}V = 0, is constant under the flow of H , i.e.

∀ t ∈ R, et{H}V = V.

Let us now fix a Hamiltonian H0 ∈ A. The vector space Ker{H0} is the set
of constants of motion and it is a sub-algebra of A. The operator {H0} is
not invertible since a derivation has always a non-trivial kernel. For instance
{H0}(Hα

0 ) = 0 for any α such that Hα
0 ∈ A. Hence we consider a pseudo-

inverse of {H0}. We define a linear operator Γ on A such that

{H0}2Γ = {H0}, (2.1)

i.e.

∀ V ∈ A, {H0, {H0, ΓV }} = {H0, V }.
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If the operator Γ exists, it is not unique in general. Any other choice Γ′ satisfies
Rg(Γ′ − Γ) ∈ Ker({H0}2).

We define the non-resonant operator N and the resonant operator R as

N = {H0}Γ
R = 1 −N ,

where the operator 1 is the identity in the algebra of linear operators acting
on A. We notice that Equation (2.1) becomes

{H0}R = 0

which means that the range Rg R of the operator R is included in Ker{H0}.
A consequence is that any element RV is constant under the flow of H0,
i.e. et{H0}RV = RV . We notice that when {H0} and Γ commute, R and
N are projectors i.e. R2 = R and N 2 = N . Moreover, in this we have
RgR = Ker{H0}, i.e. the constant of motion are the elements RV where
V ∈ A.

Let us now assume that H0 is integrable with action-angle variables (A, ϕ) ∈
B × T n where B is an open set of Rn and T n is the n-dimensional torus, so
that H0 = H0(A) and the Poisson bracket {H, H ′} between two Hamiltonians
is

{H, H ′} =
∂H

∂A
· ∂H ′

∂ϕ
− ∂H

∂ϕ
· ∂H ′

∂A

The operator {H0} acts on V given by

V =
∑
k∈Zn

Vk(A)cik·ϕ

as

{H0}V (A, ϕ) =
∑

k

iω(A).kVk(A)eik·ϕ

where the frequency vector is given by

ω(A) =
∂H0

∂A
.

A possible choice of Γ is

ΓV (A, ϕ) =
∑
k∈Zn

Vk(A)

iω(A) · keik·ϕ

ω(A) · k �= 0

We notice that this choice of Γ commutes with {H0}.
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For a given V ∈ A, RV is the resonant part of V and NV is the non-
resonant part:

RV =
∑

k

Vk(A)χ(ω(A) · k = 0)eik·ϕ (2.2)

NV =
∑

k

Vk(A)χ(ω(A) · k �= 0)eik·ϕ (2.3)

where χ(α) vanishes when proposition α is wrong and it is equal to 1 when α
is true.

From these operators defined for the integrable part H0, we construct a
control term for the perturbed Hamiltonian H0 + V where V ∈ A, i.e. we
construct f such that H0 + V + f is canonically conjugate to H0 + RV .

If H0 is resonant and RV = 0, the controlled Hamiltonian H = H0 +V +f
is conjugate to H0.

In the case RV = 0, the series (6) which gives the expansion of the control
term f , can be written as

f(V ) =

∞∑
s=2

fs, (2.4)

where fs is of order εs and given by the recursion formula

fs = −1

s
{ΓV, fs−1} (2.5)

where f1 = V .

3 Application to the Problem of A Satellite

The spin-orbit coupling problem for a satellite studied by J. Maciejewski [6]
together with effects of solar radiation pressure which is of the order of eccen-
tricity and tidal torque has been investigated in our present manuscript.

The equation of motion for satellite under consideration is

(1 + e cos v)
d2q

dv2
− 2e sin v

dq

dv
+

βe(1 + e cos v)5

(1 − e2)4

dq

dv

− 4e sin v + n2 sin q + 2ε1e(1 + e cos v)−3 sin
(q

2
+ v

)
= 0 . (3.1)

The Hamiltonian for the above equation after ignoring higher order terms
of e can be written as

H =
p2

2
− 2p − n2 cos q

− e
{
p2 cos v + βpq + n2 cos q cos v + 4ε1 cos

(q

2
+ v

)}
(3.2)
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In order to apply the control theory [10], we need to put the Hamiltonian
in an autonomous form. We consider v as an additional angle whose conjugate
action is E. Then in the autonomous form Hamiltonian can be perceived as

H(p, q, E, v) =
p2

2
− 2p − n2 cos q + E

− e
{

p2 cos v + βpq cos v + n2 cos q + 4ε1 cos
(q

2
+ v

)}
. (3.3)

where the actions are A = (p, E) and the angles are φ = (q, v).

The unperturbed Hamiltonian to be used for constructing the operator Γ is

H0 =
p2

2
− 2p − n2 cos q + E (3.4)

The action of {H0} and Γ on

V = −e{p2 cos v +βpq +n2 cos q cos v +4ε1 cos
(q

2
+ v

)
is, V ∈ A is expressed

as:

{H0}V = e

[
n2(p − 2) sin q cos v + 2pε1 sin

(q

2
+ v

)

−βp2 + 2βp + p2 sin v + n2 cos q sin v

]
(3.5)

ΓV = e

[
n2 sin q cos v

(p − 2)
+

2ε1 sin
(

q
2

+ v
)

p
− β

p2
+

2β

p
+

sin v

p2

]
(3.6)

for p �= 0, 2.
The control term f is given by

f =
−1

2
{ΓV, V }

=
−1

2

{
∂ΓV

∂p
· ∂V

∂q
− ∂ΓV

∂q

∂V

∂p

}

The explicit expression of f for p = 1 is given by

f =
1

2
e2

[
n4 sin2 q cos2 v + 4n2ε1 sin

(q

2
+ v

)
cos v sin q

+ 2n2 sin v cos v sin q + 4ε2
1 sin2

(q

2
+ v

)
+ 4ε1 sin v sin

(q

2
+ v

)
−βn2 sin q cos v − 2βε1 sin

(q

2
+ v

)
− 2β sin v + 2n2 cos2 v cos q

− 2ε1 cos v cos
(q

2
+ t

)
+ βqn2 cos v cos q − βqε1 cos

(q

2
+ v

)]
. (3.7)
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We can decrease the amplitude of the control term by considering a control
parameter α in the expression of f i.e.

f =
1

2
αe2

[
n4 sin2 q cos2 v + 4n2ε1 sin

(q

2
+ v

)
cos v sin q

+ 2n2 sin v cos v sin q + 4ε2
1 sin2

(q

2
+ v

)
+ 4ε1 sin v sin

(q

2
+ v

)
−βn2 sin q cos v − 2βε1 sin

(q

2
+ v

)
− 2β sin v + 2n2 cos2 v cos q

− 2ε1 cos v cos
(q

2
+ t

)
+ βqn2 cos v cos q − βqε1 cos

(q

2
+ v

)]
. (3.8)

4 Results and Discussions

Figure 1 depicts Poincare surface of section and Poincare map of the Hamilto-
nian given by equation (3.3) without the inclusion of control term for e = 0.1,
n = 1.0, ε1 = 0.008, β = 0.002 which exhibits chaotic behavior. Figure 2
depicts the Poincare surface of section and Poincare Map of the same Hamil-
tonian with the inclusion of control term given by (3.8) for e = 0.1, n = 1.0,
ε1 = 0.008, β = 0.002 and α = 0.9.

From these figures we observed that for e = 0.1 the system exhibits chaotic
behavior without the control term. With the addition of the control term the
chaos is suppressed for a particular value of the control parameter α = 0.9.

Figure 1

(a) Poincare surface of section for e = 0.1 without the control term.

(b) Poincare Map for e = 0.1 without the control term.
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Figure 2

(a) Poincare surface of section for e = 0.1 with the control term.

(b) Poincare Map for e = 0.1 with the control term.

5 Conclusion

Remarkably we have found that the system is able to suppress chaos for the
particular value of the controlling parameter α which asserts that the control
term obtained analytically is very effective to control the system under consid-
eration. Consequently, our analytical and computational studies are in good
agreement.
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