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Abstract

The existing DEA model introduced for resource allocation that considered ra-
dial reductions of the total consumption of every input and total output production
is guaranteed not to decrease defined for exact data. In this paper we improve this
model to imprecise data such as, interval, ordinal and fuzzy data, from the dual
form of Wang et al. model. We uses a fixed and unified production frontier to
determine the efficiencies and resource allocation of decision-making units (DMUs)
with interval input and output data. Ordinal preference information and fuzzy data
are converted into interval data through the estimation of permissible intervals and
α-level sets, respectively, and are incorporated into the interval DEA models.

Keywords: Data envelopment analysis (DEA); Imprecise data; Interval DEA model;
Centralized planning

1 Introduction

Data envelopment analysis (DEA) is a mathematical programming for evaluating the
relative efficiency of decision making units (DMUs). The first DEA model (CCR model),
introduced by Charnes et al. [10], assumed for exact data, after that Cooper et al. [14]
introduce the applications of DEA which the data was imprecise. In imprecise data
envelopment analysis (IDEA) the data can be ordinal, interval and fuzzy. In dealing
with this data the obtained models are usually non-linear. Cooper et al. [16]proposed
some methods to convert the nonlinear model to a linear one. Zhu [3, 4] on the other
hand shows that the non-linear IDEA can be solved in the standard linear CCR model
via identifying a set of exact data from the imprecise input and output data. Despotis
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and Smirlis [5] also studied the problem of IDEA, but improved an alternative approach
to deal with imprecise data in DEA. They converted a nonlinear DEA model to a LP
equivalent by transforming only on the variables. The resulting efficiency scores were
intervals. According to their approach, Wang et al. [2] developed a new pair of interval
DEA models that can both overcome some of the shortcomings of the previous interval
efficiency models in a simple, rational and effective way. Their new pair of interval DEA
models will be developed for interval input and output data rather than for crisp input
and output data. The final efficiency score for each DMU will be characterized by an
interval bounded by the best lower bound efficiency and the best upper bound efficiency
of each DMU, which they refer to as interval efficiency or efficiency interval.

Data envelopment analysis also can be used for the future programming of organi-
zations and the response of the different policies which is related to target setting and
resource allocation. The development of the scenario based target setting process will
be pursued by demonstrating some of the features of data envelopment analysis in a tar-
get setting mode. Previous research by Golany [17], Thanassoulis and Dyson [19] and
Athanassopoulos [7, 8, 9] have introduced models for assessing targets an allocating re-
sources based on data envelopment analysis.

Lozano and Villa [1] proposed two phase model for centralized or intraorganizational
resource allocation that has the two basic difference with conventional DEA model. First,
instead of solving an independent LP model projecting each DMU in turn, all DMUs are
simultaneously projected. Second, instead of reducing the inputs of any one DMU, the
aim is to reduce the total input consumption of the DMUs. Lozano and Villa model [1],
assumed for exact data.

In this paper we propose a model for centralized resource allocation with imprecise
data such as ordinal, interval and fuzzy data, based on the dual form of Wang et al.
model [2] that uses the production frontier as a benchmark to measure the lower bound
efficiency of each DMU. We also uses a fixed and unified production frontier to measure
the efficiencies of decision-making units (DMUs) with interval input and output data.
Ordinal preference information and fuzzy data are converted into interval data through
the estimation of permissible intervals and α-level sets, respectively, and are incorporated
into the interval DEA models.

This paper proceeds as follows. In section 2 models and methodology are introduced
. In section 3 our model is presented. Numerical example and conclusion are discussed in
section 4 and 5 respectively.

2 Models and Methodology

2.1 DEA for Target Setting

Data envelopment analysis also can be used for the future programming of organizations
and the response of the different policies which is related to target setting and resource
allocation. Previous research by Golany [17], Thanassoulis and Dyson [19] and Athanas-
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sopoulos [7, 8, 9] have introduced models for assessing targets an allocating resources
based on data envelopment analysis.

2.2 Radial Centralized Resource Allocation

Lozano and Villa [1] established model (1) for resource allocation. Their main goals were
first, to reduce total inputs consumption and total outputs production were guaranteed
not to decrease. Second, instead of projecting each DMU separately, all of them will
usually project to their MPSS position simultaneously.

The proposed model (1) for centralized resource allocation consisted of two phases.
In the first phase, a reduction along all input dimensions is considered while, in the
second phase, they also concentrate to the reduction of any input and/or expansion of
any output. Let j, r = 1, 2, ..., n, be indexes for DMUs; i = 1, 2; ..., m, be index for inputs;
k = 1, 2, ..., p, be index for outputs; xij , amount of input i consumed by DMUj; ykj,
quantity of output k produced by DMUj , θ, radial contraction of total input vector; si,
slack along the input dimension i; tk, additional increase along the output dimension k;
(λ1r, λ2r,...,λnr) vector is used for projecting DMU r.

The phase I model(1) is:

Model(1)Phase I/Radial/Input-Oriented
min θ

s.t.
n∑

r=1

n∑
j=1

λjrxij ≤ θ
n∑

j=1

xij , ∀i

n∑
r=1

n∑
j=1

λjrykj ≥
n∑

r=1

ykr, ∀k

n∑
j=1

λjr = 1, ∀r

λjr ≥ 0, θ free.
Model (1)Phase II/Radial/Input-Oriented

max
m∑

i=1

si +
p∑

k=1

tk

s.t
n∑

r=1

n∑
j=1

λjrxij = θ∗
n∑

j=1

xij − si, ∀i

n∑
r=1

n∑
j=1

λjrykj =
n∑

r=1

ykr + tk, ∀k

n∑
j=1

λjr = 1, ∀r

λjr, si, tk ≥ 0.

Once the phase II model is solved, the corresponding vector(λ∗
1r, λ

∗
2r,...,λ

∗
nr) defines for

each DMUr the operating point at which it should aim. The inputs and outputs of each
such point can be computed as
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x̂ir=
n∑

j=1

λ∗
jrxij , ∀i,

ŷkr=
n∑

j=1

λ∗
jrykj, ∀k.

Proposition 1 For any DMUr, the operating point onto which it is projected by Model
(1) Phase II/Radial/Input-oriented (x̂1r, x̂2r, ..., x̂mr, , ŷ1r, ŷ2r, ..., ŷpr) is Pareto efficient.

Proof (see Lozano and Villa [1]).
Thus, the radial model proposed jointly projects each of the existing DMUs onto

the Pareto efficiency frontier. This fact suggests the comparison with the conventional,
separate projection of each DMU onto the efficient frontier

2.3 Interval DEA models based on interval arithmetic

Wang et al. [2] developed a new pair of interval DEA models that result to the best lower
bound efficiency and the best upper bound efficiency of each DMU. As they mentioned,
their new pair of interval DEA models will be improved for interval input and output
data rather than for crisp input and output data.

Let j = 1, 2, ..., n, be indexes for DMUs; i = 1, 2; ..., m, be index for inputs; k =
1, 2, ..., p, be index for outputs; xij , amount of input i consumed by DMUj; ykj, quantity
of output k produced by DMUj. It is clear that θ should also be an interval number,
which showed by [θL,θU ]. We also assume that all the input and output data xij and yrj

(i = 1, ..., m; k = 1, ..., p; j = 1, ..., n) are supposed to locate within the upper and lower
bounds represented by the intervals [xL

ij , x
U
ij ] and [yL

kj, y
U
kj]where xL

ij ≥ 0 and yL
kj ≥ 0.Also

jo is the DMU under decision (usually denoted by DMUjo);uk and vi are the weights
assigned to the outputs and inputs; θU

jo stands for the best possible relative efficiency
achieved by DMUjo when all the DMUs are in the state of best production activity, while
θL

jostands for the lower bound of the best possible relative efficiency of DMUjo. They

constitute a possible best relative efficiency interval [θL
jo, θ

U
jo]. In order to avoid the use

of different production frontiers to measure the efficiencies of different DMUs, their new
pair of interval DEA models developed as follow:

max θU
jo =

p∑
k=1

uky
U
kjo

s.t
m∑

i=1

vix
L
ijo = 1,

p∑
k=1

uky
U
kj

m

−∑
i=1

vix
L
ij ≤ 0, j = 1, .., n

uk, vi ≥ 0 ∀i, k. (2)
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max θL
jo =

p∑
k=1

uky
L
kjo

s.t
m∑

i=1

vix
U
ijo = 1,

p∑
k=1

uky
U
kj

m

−∑
i=1

vix
L
ij ≤ 0, j = 1, .., n

uk, vi ≥ 0 ∀i, k. (3)
Model (2) determines the production frontier for all the DMUs and model (3) uses the

production frontier as a benchmark to measure the lower bound efficiency of each DMU.
In order to avoid the use of different production frontiers to measure the efficiencies of
different DMUs, a pair of interval DEA models will be developed. The models are based
on the interval arithmetic and always use the same constraint set, which forms a fixed and
unified production frontier, for all DMUs as well as for the measures of both the lower
and upper bound efficiencies( Wang et al. [2]).

Definition 1 A DMU, DMUo, is said to be DEA efficient if its best possible upper bound
efficiency θ∗Ujo = 1; otherwise, it is said to be DEA inefficient if θ∗Ujo < 1.(see Wang et al.,
[2]).

Now, we consider the dual form of Wang et al. models. Model (4) and (5) show
the dual form of model (2) and (3) respectively with an extra convexity constraint of
n∑

j=1

λj = 1(this is related to Variable Returns to Scale (Cooper et al. [15]).

min θL
jo

s.t.
n∑

j=1

λjx
L
ij ≤ θL

jox
U
ijo, ∀i

n∑
j=1

λjy
U
kj ≥ yL

kjo, ∀k

n∑
j=1

λj = 1,

λj ≥ 0 ∀j, θL
jo free. (4)

min θU
jo

s.t.
n∑

j=1

γjx
L
ij ≤ θU

jox
L
ijo, ∀i

n∑
j=1

γjy
U
kj ≥ yU

kjo, ∀k

n∑
j=1

γj = 1,
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γj ≥ 0, θU
jo free. (5)

We call model (5), input -oriented Wang et al. envelopment model. After solving
model (5) the corresponding vector (γ∗

1, γ
∗
2,...,γ

∗
n) defines for each DMUjo as the operating

point which it should aim. We can compute the inputs and outputs of such a point from
the formulation below

x̂ij =
n∑

j=1

γ∗
jx

L
ij, ∀i, ŷkj=

n∑
j=1

γ∗
jy

U
kj, ∀k, (6)

3 Radial Centralized Resource Allocation with Im-

precise Data

In this section we extend model (1) for imprecise data such as ordinal, interval and fuzzy
data. The models are based on model (4) and (5) but we also considered the projection of
all of the DMUs simultaneously which is related to reduction of total input consumption
of the DMUs (Lozano and Villa [1]).

Let j, r = 1, 2, ..., n, be indexes for DMUs; i = 1, 2; ..., m, be index for inputs; k =
1, 2, ..., p, be index for outputs; xij , amount of input i consumed by DMUj ; ykj, quantity of
output k produced by DMUj. It is obvious that θ should also be an interval number, which
we denote by [θL,θU ], radial contraction of total input vector;si, slack along the input
dimension i; tk, additional increase along the output dimension k; (λ1r, λ2r, ..., λnr) and
(γ1r, γ2r, ..., γnr) vectors for using the projection of DMU r. Without loss of generality , we
assume that all the input and output data xij and ykr, ykj (i = 1, ..., m; k = 1, ..., p; j, r =
1, ..., n) can not be exactly obtained due to the existence of uncertainty. They are only
known to lie within the upper and lower bounds represented by the intervals [xL

ij , x
U
ij ] ,

[yL
kj, y

U
kj]and [yL

kr, y
U
kr], where xL

ij ≥ 0, yL
kj ≥ 0 and yL

kr ≥ 0.
The phase I model is:

Model(7)Phase I/Radial/Input-Oriented

min θL

s.t.
n∑

r=1

n∑
j=1

λjrx
L
ij ≤ θL

n∑
j=1

xU
ij , ∀i

n∑
r=1

n∑
j=1

λjry
U
kj ≥

n∑
r=1

yL
kr, ∀k

n∑
j=1

λjr = 1, ∀r

λjr ≥ 0, θL free.

Model (7)Phase II/Radial/Input-Oriented

max
m∑

i=1

si +
p∑

k=1

tk
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s.t
n∑

r=1

n∑
j=1

λjrx
L
ij = θL∗ n∑

j=1

xU
ij − si, ∀i

n∑
r=1

n∑
j=1

λjry
U
kj =

n∑
r=1

yL
kr + tk, ∀k

n∑
j=1

λjr = 1, ∀r

λjr, si, tk ≥ 0.

Model(8)Phase I/Radial/Input-Oriented

min θU

s.t.
n∑

r=1

n∑
j=1

γjrx
L
ij ≤ θU

n∑
j=1

xL
ij , ∀i

n∑
r=1

n∑
j=1

γjry
U
kj ≥

n∑
r=1

yU
kr, ∀k

n∑
j=1

γjr = 1, ∀r

γjr ≥ 0, θU free.

Model (8)Phase II/Radial/Input-Oriented

max
m∑

i=1

si +
p∑

k=1

tk

s.t
n∑

r=1

n∑
j=1

γjrx
L
ij = θU∗ n∑

j=1

xL
ij − si, ∀i

n∑
r=1

n∑
j=1

γjry
U
kj =

n∑
r=1

yU
kr + tk, ∀k

n∑
j=1

γjr = 1, ∀r

γjr, si, tk ≥ 0.
Once the phase II for the model (8) is solved, the corresponding vector (γ∗

1r, γ
∗
2r,...,γ

∗
nr)

defines for each DMUr the operating point which it should aim. The inputs and outputs
of each such point can be computed as

x́ir =
n∑

j=1

γ∗
jrx

L
ij , ∀i, ýkr=

n∑
j=1

γ∗
jry

U
kj, ∀k, (9)

By models( 7) and (8) introduced in this section we have, first, instead of solving
an independent LP model projecting each DMU in turn, all DMUs are simultaneously
projected. Second, instead of reducing the inputs of any one DMU, the aim is to reduce
the total input consumption of the DMUs. Third, we can have imprecise data such as:
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fuzzy, ordinal and interval data. By using formulation (9), we defined exact data as an
operating point for all interval data. In Definition 2 Wang et al. [2] determined the
efficiency when θ∗Ujo = 1, according to their definition we defined Proposition 2 and proved
it in Appendix A.

Proposition 2 For any DMUr, the operating point onto which it is projected by Model
(8) Phase II/Radial/Input-oriented (x́1r, x́2r, ..., x́mr, , ý1r, ý2,r, ..., ýpr) is Pareto efficient.

It is essential to say that our operating point from model (8) Phase II are introduced
with exact data, but in the case of the necessity of interval operating point we also can
solve model (7) Phase II ( as Wang et al. [2] mentioned that θL

jostands for the lower bound
of the best possible relative efficiency of DMUo) and follow the formulations below for
computing the lower and upper bound of the operating point.

x̂U
ir =

n∑
j=1

λ∗
jrx

U
ij , ∀i, ŷL

kr=
n∑

j=1

λ∗
jry

L
kj, ∀k, (10)

x̂L
ir =

n∑
j=1

γ∗
jrx

L
ij , ∀i, ŷU

kr=
n∑

j=1

γ∗
jry

U
kj, ∀k, (11)

We should mention that the operating point from formulation (10) are not necessary
Pareto efficient.

3.1 Incorporation of ordinal preference information and fuzzy
data into the interval DEA models

Wang et al. [2] mentioned that, in real decision-making and evaluation problems, ordinal
preference information and/or fuzzy data are appeared. They also, discussed how to
transform ordinal preference information and fuzzy data into interval data. We use Wang
et al. method [2]to deal with fuzzy and ordinal data.

3.1.1 The transformation of ordinal preference information

Let us take the transformation of ordinal preference information about the output ykj(j =
1, ..., n) (also for ykr, r = 1, .., n)for example. The ordinal preference information about
input and other output data can be converted in the same way.

For weak ordinal preference information yk1 ≥ yk2 ≥· · · ≥ ykn,, we have the following
ordinal relationships after scale transformation:

1 ≥ y̌k1 ≥ y̌k2 ≥· · · ≥ y̌kn ≥ σk,
where σk is a small positive number reflecting the ratio of the possible minimum of{ykj|j =
1, ..., n} to its possible maximum. It can be approximately estimated by the DM. We refer
to it as the ratio parameter for convenience. The resultant permissible interval for each
y̌kj is given by
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y̌kj ∈ [σk, 1], j = 1, ..., n.

For strong ordinal preference information yk1 > yk2 >· · · > ykn, we have the following
ordinal relationships after scale transformation:

1 ≥ y̌k1, y̌kj ≥ χky̌k,j+1 (j = 1, ..., n − 1) and y̌kn ≥ σk,
where χk is a preference intensity parameter satisfying χk > 1 provided by the DM and
σk is the ratio parameter also provided by the DM. The resultant permissible interval for
each ŷkj can be derived as follows:

y̌kj ∈ [σkχ
n−j
k , χ1−j

k ], j = 1, ..., n with σk ≤ χ1−n
k .

3.1.2 The transformation of fuzzy data

In order to extend the usage of interval centralized model ( models (7) and (8)) to deal
with imprecise data, fuzzy data will be transformed into interval data by using the α-level
sets (Zimmermann [6]). Let the inputs x̃ijand outputs ỹkj(also for ỹkr ) be fuzzy data with
membership functions μx̃ij

and μỹkj
, respectively, and S(x̃ij)and S(ỹkj) be the support of

x̃ij andỹkj , respectively. Then the α-level sets of and x̃ij and ỹkj can be defined as

(xij)α = {xij ∈ S(x̃ij)| μx̃ij
(xij) ≥ α}

= [min
xij

{xij ∈ S(x̃ij)|μx̃ij
(xij) ≥ α}, max

xij

{xij ∈ S(x̃ij)|μx̃ij
(xij) ≥ α}]

∀i, j,
(ykj)α = {ykj ∈ S(ỹkj)| μỹkj

(ykj) ≥ α}

= [min
ykj

{ykj ∈ S(ỹkj)|μỹkj
(ykj) ≥ α}, max

ykj

{ykj ∈ S(ỹkj)|μỹkj
(ykj) ≥ α}]

∀k, j,
where 0 < α ≤ 1. By setting different levels of confidence, namely1 − α, fuzzy data are
accordingly transformed into different α-level sets {(xij)α|0 < α ≤ 1}and {(xij)α|0 <
α ≤ 1} , which are all intervals. The widest input and output intervals will be (xij)0 =
{xij ∈ S(x̃ij)|μx̃ij

(xij) > 0} = [xL
ij , x

U
ij] and (ykj)0 = {ykj ∈ S(ỹkj)|μỹkj

(ykj) > 0} =

[yL
kj, y

U
kj] and xL

ij , xU
ij , yL

kj and yU
kj are the lower and upper bounds of fuzzy data x̃ij and

ỹkj, respectively. The production frontier will obviously be determined by interval data
[xL

ij , x
U
ij ] and [yL

kj, y
U
kj](i = 1, ..., m; j = 1, ..., n; k = 1, ..., p). Any α -level sets input and

output data (xij)α = [(xij)
L
α, (xij)

U
α ], (ykj)α = [(ykj)

L
α, (ykj)

U
α ] and (ykr)α = [(ykr)

L
α, (ykr)

U
α ]

should be measured using the identical production frontier. So, the interval DEA models
for fuzzy input and output data will be as follows:

Model(9)Phase I/Radial/Input-Oriented
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min ( θ)L
α

s.t
n∑

r=1

n∑
j=1

λjr(xij)
L
α ≤ ( θ)L

α

n∑
j=1

(xij)
U
α , ∀i

n∑
r=1

n∑
j=1

λjr(ykj)
U
α ≥

n∑
r=1

(ykr)
L
α, ∀k

n∑
j=1

λjr = 1, ∀r

λjr ≥ 0, ( θ)L
α free.

Model (9)Phase II/Radial/Input-Oriented

max
m∑

i=1

si +
p∑

k=1

t

s.t
n∑

r=1

n∑
j=1

λjr(xij)
L
α = ( θ∗)L

α

n∑
j=1

(xij)
U
α − si, ∀i

n∑
r=1

n∑
j=1

λjr(ykj)
U
α =

n∑
(

r=1

ykr)
L
α + tk, ∀k

n∑
j=1

λjr = 1, ∀r

λjr, si, tk ≥ 0.

Model(10)Phase I/Radial/Input-Oriented

min (θ)U
α

s.t.
n∑

r=1

n∑
j=1

γjr(xij)
L
α ≤ (θ)U

α

n∑
j=1

(xij)
L
α, ∀i

n∑
r=1

n∑
j=1

γjr(ykj)
U
α ≥

n∑
r=1

(ykr)
U
α , ∀k

n∑
j=1

γjr = 1, ∀r

γjr ≥ 0, (θ)U
α free.

Model (10)Phase II/Radial/Input-Oriented

max
m∑

i=1

si +
p∑

k=1

tk

s.t
n∑

r=1

n∑
j=1

γjr(xij)
L
α = (θ∗)U

α

n∑
j=1

(xij)
L
α − si, ∀i
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n∑
r=1

n∑
j=1

γjr(ykj)
U
α =

n∑
r=1

(ykr)
U
α + tk, ∀k

n∑
j=1

γjr = 1, ∀r

γjr, si, tk ≥ 0.
where (θ)U

α ) and ( θ)L
α are, respectively, the upper and lower bounds of the best possible

relative efficiency for DMUs under given α-level sets, which form an efficiency interval
denoted by (θ)α = [( θ)L

α, (θ)U
α )].Note that we also use one production frontier for every

α-level rather than different production frontiers for different α-levels (Wang et al. [2]).

4 Numerical Illustration

In this section we will apply our models to manufacturing industries. The data collected
from Wang et al. [2], but according to our subject we just make some changes to the
data. Our numerical example included in two parts. In each part we compare our models
to the dual form of Wang et al. models.
Example 1. Table 1 presents the data set used by Wang et al. [2]. There are seven
manufacturing industries (DMUs) participating in the evaluation, each consuming two
inputs (Capital and Labor) and producing one output (Gross output value). We have to
mention that we supposed all the manufacturing industries are dependent because the use
of independent ones is not consequent with the hypothesis of the existence of a resource
allocation scenario. The data are all estimated and are thus imprecise and only known
within the prescribed bounds, which are listed in Table1. Table 2 reports the results
from model (8) Phase II and model (5) ( we call it Input-Oriented Wang et al. model) ,
respectively (are solved by LINGO, a powerful professional software package) , when used

the interval data from Table 1. We should mention that in Table 2,
n∑

j=1

xL
ij and

n∑
j=1

yU
rj are

the total lower input and total upper output of the existing DMUs.

Note that the I-O Wang et al. model reduces both total inputs with the benefit of
significant total output increases. As for the proposed models, the more balanced results
are obtained for the Radial model, which has a larger input reduction than I-O Wang et
al. model although with a smaller output increase.
Example 2. Table 3 also presents the data set used by Wang et al [2] but we change
the data a little bit to be suitable for our reallocating process. For example, there are
eight manufacturing enterprise (DMUs). Each manufacturing enterprise manufactures the
same type of product, but the qualities are different. Therefore, both the gross output
value (GOV) and the product quality (PQ) are considered as outputs. The inputs include
Capital and the number of employees (NOE), whose data are known exactly. The data
about the gross output values, however, are imprecise due to the unavailability at the
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Table 1
Data for seven DMUs
DMU Inputs Output

Capital Labor Gross output value
1 [564403, 621755] [67111, 743281] [806549, 866063]

2 [614371, 669665] [685943, 742345] [917507, 985424]

3 [762203, 798427] [762207, 805677] [1117142, 1195562]

4 [862016, 937044] [779894, 846496] [1206179, 1261031]

5 [1016898, 1082662] [799714, 877137] [1381315, 1462543]

6 [1164350, 1267970] [807172, 889416] [1497679, 1652787]

7 [1731916, 1816008] [818090, 895746] [1702249, 1812655]

Source:Wang et al. [2].
Table 2
Summery of results from Wang et al. [2] data set

I-O Wang et al. model Our approach
DMU (x̂1j) (x̂2j) (ŷ1j) (x́1j) (x́2j) (ý1j)
1 564403 674111 866063 614371 685943 945424

2 614371 685943 985424 1029236 741243 1321432

3 762203 762207 1195562 1164350 807172 1652787

4 830982 751817 1261031 614371 685943 985424

5 1002221 789256 1467812 1164350 807172 1652787

6 1164350 807172 1652787 1164350 807172 1652787

7 1731916 818090 1812655 614371 685943 985424

Total 6670446 5288596 9241334 6365399 5220588 9236065
n∑

j=1

xL
ij 6716157 5327131 6716157 5327131

n∑
j=1

yU
rj 9236065 9236065
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moment and are thus estimated. Some of them are given as interval numbers and some
as triangular fuzzy numbers. The product quality is a qualitative index and is given as
strong ordinal preference information that is obtained from the evaluation of customers
to their products. The data are presented in Table 3.

Suppose the preference intensity parameter and the ratio parameter about the strong
ordinal preference information are given (or estimated) as χ2 = 1.12 and σ2 = 0.1, re-
spectively. By converting ordinal data into interval data described in Section 3, we can
derive an interval estimate for the product quality of each DMU, which is shown in the
last column of Table 4.

Since the GOV index for DMU2, DMU4 and DMU6 is given in the form of triangular
fuzzy number, i.e. GOVj = (GOVL

j ,GOVM
j ,GOVU

j )

(j = 2, 4, 6), their membership functions can be expressed as

μGOVJ
(xj) =

⎧⎪⎪⎨
⎪⎪⎩

xj−GOV L
j

GOV M
j −GOV L

j
, GOV L

j ≤ xj ≤ GOV M
j

GOV U
j −xj

GOV U
j −GOV M

j
, GOV M

j ≤ xj ≤ GOV U
j , j = 2, 4, 6

0, xj /∈ [GOV L
j , GOV U

j ]

where GOVL
j ,GOVM

j and GOVU
j are the lower bound, most likely and upper bound values

of GOVj, respectively. For a given α-level, the corresponding α-level sets are given by

(GOVj)α = {xj ∈ S(GOVj)|μGOVj
(xj) ≥ α}

= [(GOVj)
L
α, (GOVj)

U
α ]

= [GOV L
j + α(GOV M

j − GOV L
j ), GOV U

j − α(GOV U
j − GOV M

j )], j = 2, 4, 6.

As for exact data, they can be viewed as a special case of interval data with the
lower and upper bounds being equal. Therefore, all the input and output data are now
transformed into interval numbers and can be evaluated using interval DEA models. In
Table 5 we have compared the results from model (8) Phase II and model (5). Since it is
not logical to reallocate product quality between the productive units, in Table 5 we did
not considered output 2.

Table 3

Data for eight DMUs with two inputs and two outputs
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DMU Inputs Outputs
C NOE GOV PQa

1 2166 1875 [14548, 14950] 2

2 1455 1342 [12468, 13045, 13584] 7

3 2562 2359 [17896, 18452] 1

4 2346 2018 [14968, 15673, 15900] 3

5 1517 1548 [13980, 14638] 8

6 2034 1760 [14026, 14324, 14582] 6

7 2256 1982 [16542, 17169] 5

8 2465 2245 [17600, 18256] 4
aOrdinal scale from 1 = best to 8 = worst with the preference intensity parameter χ2= 1.12

and the ratio parameter σ2 =0.1
Source:Wang et al. [2].
Table 4
The input–output data for the eight DMUs after the transformation
of ordinal preference information.
DMU Inputs Outputs

C NOE GOV PQ
1 2166 1875 [14548, 14950] [0.1973823, 0.892857]

2 1455 1342 [12468, 13045, 13584] [0.1120000, 0.506631]

3 2562 2359 [17896, 18452] [0.2210681, 1.000000]

4 2346 2018 [14968, 15673, 15900] [0.1762342, 0.797194]

5 1517 1548 [13980, 14638] [0.1000000, 0.452349]

6 2034 1760 [14026, 14324, 14582] [0.1254400, 0.567427]

7 2256 1982 [16542, 17169] [0.1404928, 0.635518]

8 2465 2245 [17600, 18256] [0.1573519, 0.711780]

Source:Wang et al. [2].
Table 5
Summary of results for the Wang et al. [2] data set.

α =0 α =0.25 α =0.5
I-O Wang Our Existing I-O Wang Our Existing I-O Wang Our Existing

Total Model approach Model approach Model approach

Input(C) 16172 15962 16801 16179 15962 16801 16186 15512 16801

Input(NOE) 14774 14533 15138 14779 14533 15138 14783 14684 15138

Output (GOV) 127531 127789 127531 127275 127311 127275 127202 127020 127020

α =0.75 α =1
Input(C) 16192 15512 16801 16198 15512 16801

Input(NOE) 14786 14684 15138 14790 14684 15138

Output (GOV) 126764 126928 126764 126507 126655 126507

According to the results in Table 5 our approach (model (8) Phase II) has a larger
input reduction and the first output (GOV) increase than I-O Wang et al. model (5),
except in the case of α = 0.5. The operating point will be changed under different
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α−level sets, in this case the DM can determine which of the operating point can be
chosen. High α means precision of the interval chosen and low α means high confidence
in the result. A risk-averse assessor or DM might choose a high alpha because of strong
dislike of uncertainty (fuzziness), while a risk-taking assessor or DM might prefer a low
alpha because of seeking of risk (Wang et al. [2]).

5 Conclusion

In this paper we have developed DEA model for centralized resource allocation to deal
with imprecise data such as interval, ordinal and fuzzy data. Compared with the existing
DEA model has been presented for centralized resource allocation for exact data that
project all DMUs onto the efficient frontier and consider radial reductions of the total
consumption of all the inputs, our model is presented for imprecise data as a new subject
of the existing DEA models for setting targets and resource allocation with exact data.
To deal with imprecise data and avoiding different efficient frontier we used the dual form
of the Wang et al. model [2]which is a interval DEA model computes the best possible
relative efficiency and utilize a fixed and unified production frontier as a benchmark to
measure the efficiencies of all DMUs, which makes our models more rational and more
reliable. Two numerical examples have illustrated the usage and the advantages of our
interval DEA model for imprecise data.

Appendix A
Proposition 1 For any DMU r, the operating point onto which it is projected by Model

(8) Phase II/Radial/Input-oriented (x́1r, x́2r, ..., x́mr, , ý1r, ý2r, ..., ýpr) is Pareto efficient.

let us assumed that the proposition is false and we will arrive at a contradiction. If
(x́1r, x́2r, ..., x́mr, , ý1r, ý2r, ..., ýpr) is not technically efficient then considering model (4),

there exist a vector(γ1r, γ2r,...,γnr) satisfying
n∑

j=1

γjr = 1

x̄ir =
n∑

j=1

γjrx
L
ij ≤ x́ir ∀i,

ȳkr=
n∑

j=1

γjry
U
kj ≥ ýkr, ∀k,

such that at least for one input íor one ḱ the previous inequality is strict. Let us
assume that it is for input í for which

x̄ír =
n∑

j=1

γjrx
L
íj < x́ír.

Then, using in respect of DMU r the vector (γ1r, γ2r,...,γnr) instead of optimal one
(γ∗

1r, γ
∗
2r,...,γ

∗
nr) would lead to a feasible solution of Model (8)Phase II/Radial/Input-

Oriented having an objective function value
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m∑
i=1

s∗i +
p∑

k=1

t∗k+
m∑

i=1

(x́ir − x̄ir) −
p∑

k=1

( ȳkr − ýkr, )
m

>
∑
i=1

s∗i +
p∑

k=1

t∗k.

This is higher than the initial optimum, which leads to a contradiction. The same
conclusion is obtained if it is for certain output ḱ for which

ȳḱr=
n∑

j=1

γjry
U
ḱj > ýḱr. �
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