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1. Abstract 
 
In this paper we prove fixed point result in generating Polish space (random 

space which is more general than the other spaces) with implicit relations. 
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2. INTRODUCTION 
 
Fixed-point theory is an important branch of non-linear analysis. A point, which is 
invariant under any transformation, is termed as “Fixed    Point” that is for any 
transformation T on metric space (X, d), x is fixed point of T if  T(x) = x. 
Probabilistic functional analysis has emerged as one of the important mathematical  
disciplines  in view of its role in analyzing probabilistic models in the applied 
sciences.   The study of fixed points of random operators forms a central topic in this 
area. The Prague school of probabilistic initiated its study in the 1950s. However, the 
research in this area flourished after the publication of the survey article of Bharucha-
Reid [3]. Since then, many interesting random fixed point results and several 
applications have  appeared in the literature, see, for example the work of Beg and 
Shahzad [2], Itoh  [5], Lin [7], O’Regan [8], Papageorgiou [9], Dhagat et.l.[4 ], 
Shahzad and Latif [10], Tan and Yuan [11], Xu [12]. The purpose of this paper is to  
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establish fixed point result in generating Polish space ( random space which is more 
general than the other spaces). 
Let (Ω, ∑ ) be a measurable space with ∑ a sigma algebra of subsets of  Ω  and M a  
non-empty subset of a metric space X = (X, d). Let 2M  be the family of all non-empty  
subsets of M and C(M)  the family of all nonempty closed subsets of M. A mapping  
G : Ω → 2M is called measurable if, for each open subset U of M,

}.)(:{)(,)( 11 φ≠∩Ω∈=∑∈ −− UwGwUGwhereUG A mapping ׷ ߦ  Ω ՜  is  ܯ
called a measurable selector of a measurable mapping G : Ω → 2M if ߦ  is measurable 
and ߦሺݓሻ א ݓ  for  each (ݓሺܩ א  Ω. A mapping T : Ω ×M  → X is said to be a 
random operator if, for each  fixed x א M, T(., x) :  Ω  → X is measurable. A 
measurable mapping ׷ ߦ  Ω ՜  is a random fixed point of a random operator T : Ω  ܯ
×M  → X  if ߦሺݓሻ = T ൫ݓ, ݓሻ൯ for eachݓሺߦ א Ω. 
DEFINITION 2.1: Let X be non empty set and ]}1,0(:{ ∈ααd  be a family of 

mappings dα of (Ω×X) ൈ (Ω×X) into R+, w ߳ Ω be a selector. ,(X ])1,0(: ∈ααd  is 

called generating Polish space of quasi metric family if it satisfies the following 
conditions: 
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DEFINITION 2.2 : Let ,(X ])1,0(: ∈ααd  be a generating Polish space of 

quasi metric family  and S and T be mappings from Ω×X into X. The mapping S and 
T are said to be quasi compatible if  

,0),(),,(( ∞→→ nasxwTSxwSTd nnα Ω∈∈ w],1,0(α  
 whenever {w,xn} be a sequence in Ω×X such that  
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n n ∈=
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DEFINITION 2.3: Let ,(X ])1,0(: ∈ααd  be a generating Polish space of 

quasi metric family and S and T be mappings from Ω×X into X. The mapping S and  
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T are said to be compatible of type (A) if: andxwSSxwTSd nn 0),(),,(( =α

0),(),,(( =nn xwTTxwSTdα  

Whenever {w, xn} be a sequence in Ω×X such that  

=
∞→

),(
lim

nxwS
n

.),(
lim

XpsomeforpxwT
n n ∈=

∞→
 

DEFINITION 2.4: IMPLICIT RELATION: Let ࣠ be the set of all real functions 
࣠: R4

+ ՜ R such that:  (F1): F is continuous in each coordinate variable, 
 (F2): If either ܨሺݑ, 0, ,ݑ ሻݒ ൑ 0 or ܨሺݑ, 0, ݑ ൅ ,ݒ ሻݒ ൑ 0 for all ݑ, ݒ ൒ 0, then there 
exists a real constant 0൑ ݄ ൑ ݑ ݐ݄ܽݐ ݄ܿݑݏ 1 ൑   .ݒ
 
 
3. SOME CONCERNING RESULTS  
 
LEMMA 3.1: Let ,(X ])1,0(: ∈ααd  be a generating Polish space of quasi 
metric family and S and T be mappings from Ω×X into X. Suppose that 
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PROOF 3.1.1: Suppose that      
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By 2.1.3 , we have 

],0();),,(()),(),,(()),,(( αμμμα ∈+= TpxwTSdxwTSxwSTdTpxwSTd nnnn  
Since S and T are quasi compatible, we have  
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PROOF 3.1.2: Since T is continuous,  
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This completes the proof. 
LEMMA 3.2: Let ,(X ])1,0(: ∈ααd  be a generating Polish space of quasi 
metric family  and S and T be mappings from Ω×X into X. If S and T are compatible 
of type (A) for any α ߳ ( 0, 1] and for µ ߳ ( 0, α]. 
        SSpTSpTTpSTpThen ===  
PROOF : Suppose {w,xn} be a sequence in Ω×X defined by xn = p as n ՜ ∞ and  
               Sp = Tp. 

Then we have =
∞→

),(
lim

nxwS
n

SpxwT
n n =

∞→
),(

lim

.
.

.,
.

]1,0(;0)),(),,((lim),(
),(

SSPTSpTTpSTpTherefore
TSpTTp
SpTpBut

SSpTSphaveweSimilarly
TTpSTphaveweHence

xwTTxwSTdTTpSTpd
haveweAtypeofcompatiblehaveTandSSince

nnn

===
=⇒
=

=
=

∈==
∞→

ααα

 

 
Remark: Quasi compatible pair of maps is compatible of type (A) but converse is not 
always true. 
 
 
4. MAIN RESULTS:                               
 
THEOREM (4.1):  Let ,(X ])1,0(: ∈ααd be a Generating Polish space of quasi 
metric family and S,T & G are mapping from Ω ൈ X → X are continuous random 
operator w.r.t. d . Suppose there is some α ߳ ( 0, 1) such that for x, y ߳ X and w ߳ Ω,  
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we have the following conditions 
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    Similarly                           d2n   ≤ h d2n-1  
Thus {d2n} be monotone decreasing and hence converge to zero. 
 Therefore {GG(w,x2n)} is a Cauchy sequence and converge to Gp and hence to point  
X. 
Since {SG(w,x2n)} and {TG(w,x2n)} are subsequence of {GG(w,x2n)} and so converge 
to same point p. Now by lemma 3.1 we obtain 
SGp = GSp and Sp = Gp 
Similarly TGp = GTp and Tp = Gp 
Hence Sp = Tp = Gp. 
Also Sp = p = Gp = Tp as Gp = p. 
Hence p is common fixed point of S, T and G. 
This completes the proof. 
THEOREM 4.2: Let ,(X ])1,0(: ∈ααd  be a generating Polish space of 

quasi metric family  and S, T and G be mappings from Ω×X into X satisfying  
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PROOF :Similar to the proof of the theorem 4.1 by using lemma 3.2. 
COROLLARY 4.3:  Let ,(X ])1,0(: ∈ααd be a Generating Polish space of quasi 

metric family and S,T & G are mapping from Ω ൈ X → X are continuous random 
operator w.r.t. d . Suppose there is some α ߳ ( 0, 1) such that for x, y ߳ X and w ߳ Ω, 
we have the following conditions 
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PROOF:
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Thus {d2n} be monotone decreasing and hence converge to zero.
  Therefore {GG(w,x2n)} is a Cauchy sequence and converge to Gp and hence to point  

X. 
Since {SG(w,x2n)} and {TG(w,x2n)} are subsequence of {GG(w,x2n)} and so converge 
to same point p. Now by lemma 3.1 we obtain 
SGp = GSp and Sp = Gp 
Similarly TGp = GTp and Tp = Gp 
Hence Sp = Tp = Gp. 
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Also Sp = p = Gp = Tp as Gp = p. 
Hence pis common fixed point of S, T and G. 
This completes the proof. 
COROLLARY 4.4:  Let ,(X ])1,0(: ∈ααd be a Generating Polish space of quasi 

metric family and S,T & G are mapping from Ω ൈ X → X are continuous random 
operator w.r.t. d . Suppose there is some α ߳ ( 0, 1) such that for x, y ߳ X and w ߳ Ω, 
we have the following conditions 
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PROOF: Similar to the proof of the corollary 4.3 by using lemma 3.2. 
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