Analytical Inversion of Two Dimensional

Laplace -Carson Transform by a Differential

Method

B. Hasani Lichaei ${ }^{1}$, H. Taheri Kate Sari ${ }^{2}$ and A. Sharriffar ${ }^{3}$
${ }^{1}$ Iran, Guilan, Rasht, Fooman Azad University b_hasani2004@yahoo.com
${ }^{2}$ Iran,Tehran, Shahid Beheshti University
hosain_taheri_k@yahoo.com
${ }^{3}$ Iran, Guilan,Rasht, Fooman Azad University
Azin936@yahoo.com

Abstract

A differential method for recovering a function $f\left(t_{1}, t_{2}\right)$ from its two dimensional Laplace-Carson transform $p q \hat{f}(p, q)$ given as continuous or discrete data on a finite interval.The introduction of the variables $u_{1}=\frac{1}{p}, u_{2}=\frac{1}{q}$ converts this transform into a Mellin convolution, with a transformed kernel involving the gamma function .the truncation of the infinite product representation of $\frac{1}{\Gamma(1-s) \Gamma(1-w)}$ leads to an approximate differential expression for the solution.

Keywords: Two dimensional Laplace-Carson transform; two dimensional Mellin transform; Functional sequence; Inverse problems.

1 .Introduction

The Laplace-Carson transform provides a powerful method for analyzing linear systems.

In most problems solution inversion of Laplace-Carson transform involve numerous and complicated functions.Many interesting problems in physics lead to LaplaceCarson transforms of which inversion are not expressed in terms of classified functions.Therefore, we are interested to have analytical or numerical method to solve these problems.
C.Donalato's[1] analytical one dimensional method implying Laplace-Carson transform and Mellin transform leads to functional sequence $f_{n}(t)$ when $n \rightarrow \infty$ then $f_{n}(t)$ converge to $f(t)$.The extension of this method to two dimensional expressed in this paper without implying inversion two dimensional Laplace-Carson transform can Make a functional sequence $f_{n}\left(t_{1}, t_{2}\right)$ since $n \rightarrow \infty$ converge to exact $f\left(t_{1}, t_{2}\right)$.

2 .Section 2

In this section we express two lemmas and conclusion will be used in next section.

Lemma 2.1

Let $g: R \rightarrow R$ then $\forall n \geq 1 \frac{d^{n}}{d u^{n}}\left(u^{n} g(u)\right)=\left[n+u \frac{d}{d u}\right] \frac{d^{n-1}}{d u^{n-1}}\left(u^{n-1} g(u)\right)$
Proof .According to Leibnitz Theorem if $f, g: R \rightarrow R$ and $f, g \in C^{n}[a, b]$ then

$$
(f(u) \cdot g(u))^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(u) g^{(k)}(u)
$$

Therefore

$$
\begin{aligned}
\frac{d^{n}}{d u^{n}}\left(u^{n} g(u)\right) & =n \frac{d^{n-1}}{d u^{n-1}}\left(u^{n-1} g(u)\right)+u \frac{d^{n}}{d u^{n}}\left(u^{n-1} g(u)\right) \\
& =\left[n+u \frac{d}{d u}\right] \frac{d^{n-1}}{d u^{n-1}}\left(u^{n-1} g(u)\right) \quad \forall n \geq 1
\end{aligned}
$$

Conclusion 2.1

Extension of lemma2.1 to two dimensional leads us

$$
\frac{d^{n}}{d u_{2}{ }^{n}}\left(u_{2}{ }^{n} g\left(u_{1}, u_{2}\right)\right)=\left[n+u_{2} \frac{d}{d u_{2}}\right] \frac{d^{n-1}}{d u_{2}{ }^{n-1}}\left(u_{2}{ }^{n-1} g\left(u_{1}, u_{2}\right)\right)
$$

Lemma 2.2

Let $g: R \rightarrow R$ then
$\forall n \geq 1 \quad \frac{d^{n}}{d u^{n}}\left(u^{n} g(u)\right)=\prod_{k=1}^{n}\left[k+u \frac{d}{d u}\right] g(u)$
Proof .According to lemma 2.1

$$
\begin{aligned}
& \frac{d^{n}}{d u^{n}}\left(u^{n} g(u)\right)=\left[n+u \frac{d}{d u}\right] \frac{d^{n-1}}{d u^{n-1}}\left(u^{n-1} g(u)\right) \quad \forall n \geq 1 \\
= & {\left[n+u \frac{d}{d u}\right]\left[(n-1)+u \frac{d}{d u}\right] \ldots\left[1+u \frac{d}{d u}\right] g(u) } \\
= & \prod_{k=1}^{n}\left[k+u \frac{d}{d u}\right] g(u)
\end{aligned}
$$

Conclusion 2.2

Extension of lemma2.2 to two dimensional leads us

$$
\frac{d^{n}}{d u_{2}{ }^{n}}\left(u_{2}{ }^{n} g\left(u_{1}, u_{2}\right)\right)=\prod_{k=1}^{n}\left[k+u_{2} \frac{d}{d u_{2}}\right] g\left(u_{1}, u_{2}\right) \quad \forall n \geq 1
$$

3. The inversion formula

3.1Two dimensional Laplace Carson Transform and Two dimensional Mellin Transform.

Two Dimensional Laplace-Carson Transform $\hat{f}_{c}(p, q)$ of a real function $f\left(t_{1}, t_{2}\right)$ $t_{1}, t_{2} \geq 0$ Is defined by Ditkin and Prudnikov [3]

$$
\begin{equation*}
\hat{f}_{c}(p, q)=p q \int_{0}^{\infty} \int_{0}^{\infty} e^{-p t_{1}-q t_{2}} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \tag{1}
\end{equation*}
$$

We assume that $\hat{f}_{c}(p, q)$ is known for real positive values of p, q in the interval $[a, b],[c, d]$ and wish to approximately reconstruct $\hat{f}_{c}(p, q)$ in the widest possible range of values of t_{1}, t_{2}; in most applications, $f\left(t_{1}, t_{2}\right)$ and hence $\hat{f}_{c}(p, q)$ are positive functions.
An interesting property of the transform of Eq.(1) is brought out by supposing that the variable and functions involved are physical quantities.then we see that $\hat{f}_{c}\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}\right)$, unlike $\hat{f}\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}\right)$, retains the physical dimensions of $f\left(t_{1}, t_{2}\right)$. Note that $p=\frac{1}{u_{1}}, q=\frac{1}{u_{2}}$.so a new image function is written by

$$
\begin{equation*}
g\left(u_{1}, u_{2}\right)=\hat{f}_{c}\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}\right)=\frac{1}{u_{1} u_{2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{t_{1}}{u_{1}}-\frac{t_{2}}{u_{2}}} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \tag{2}
\end{equation*}
$$

Thus the new transformed function $g\left(u_{1}, u_{2}\right)$ becomes physically alike to $f\left(t_{1}, t_{2}\right)$; in next section some examples will illustrate that $g\left(u_{1}, u_{2}\right)$, unlike $\hat{f}_{c}(p, q)$ or $\hat{f}(p, q)$, constitutes by itself an approximate reconstruction of $f\left(t_{1}, t_{2}\right)$.
By multiplying and dividing by t_{1}, t_{2} the integrand, $\mathrm{Eq}(2)$ can be put in the form of a two dimensional mellin convolution product

$$
\begin{equation*}
g\left(u_{1}, u_{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{t_{1}}{u_{1}}\right)\left(\frac{t_{2}}{u_{2}}\right) e^{-\frac{t_{1}}{u_{1}}-\frac{t_{2}}{u_{2}}} f\left(t_{1}, t_{2}\right) \frac{d t_{1} d t_{2}}{t_{1} t_{2}} \tag{3}
\end{equation*}
$$

The kernel of this integral equation has the proper from $h\left(\frac{u_{1}}{t_{1}}, \frac{u_{2}}{t_{2}}\right)$, where

$$
\begin{equation*}
h(x, y)=\frac{1}{x y} e^{-\frac{1}{x}-\frac{1}{y}} \tag{4}
\end{equation*}
$$

Then

$$
h\left(\frac{u_{1}}{t_{1}}, \frac{u_{2}}{t_{2}}\right)=\frac{t_{1} t_{2}}{u_{1} u_{2}} e^{-\frac{t_{1}-\frac{t_{2}}{u_{1}}}{u_{2}}}
$$

Eq.(3) can be solved by taking its two dimensional Mellin transform, which for a function $h(x, y)$ is defined by

$$
\begin{equation*}
M[h(x, y)] \equiv H(s, w)=\int_{0}^{\infty} \int_{0}^{\infty} h(x, y) x^{s-1} y^{w-1} d x d y \tag{5}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\Gamma(1-s)=\int_{0}^{\infty} \frac{1}{x} e^{-\frac{1}{x}} X^{s-1} d x, \quad s<1 \tag{6}
\end{equation*}
$$

Where Γ denotes the usual gamma function.By Eq.(4) we can see that

$$
\begin{equation*}
M[h(x, y)] \equiv H(s, w)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{x y} e^{-\frac{1}{-x}-\frac{1}{y}} x^{s-1} y^{w-1} d x d y=\Gamma(1-s) \Gamma(1-w), s<1, w<1 \tag{7}
\end{equation*}
$$

Assuming the existence of the other transforms, we obtain from Eq.(3) $G(s, w)=H(s, w) F(s, w)$ and hence

$$
\begin{equation*}
F(s, w)=G(s, w) / H(s, w)=[1 /(\Gamma(1-s) \Gamma(1-w))] G(s, w) \tag{8}
\end{equation*}
$$

G and H have a common region of analyticity.we can obtain $f\left(t_{1}, t_{2}\right)$ from Eq.(5) which could be Mellin inverted.For this purpose instead of $\frac{1}{\Gamma}$ we employ representation of an infinite product.

2.2 .Obtaining the approximate of inversion $F(s, w)$

The infinite product representation of $\frac{1}{\Gamma}$ is (see,e,g.,[9,p,Eq.(8.322)]))

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)\left(1+\frac{1}{k}\right)^{-z} \tag{9}
\end{equation*}
$$

The truncation of this product after n terms provides an approximation for $\frac{1}{\Gamma(z)}$ The result can be simplified to

$$
\begin{align*}
& \frac{1}{\Gamma(1-s)} \cong(1-s)\left(1-\frac{s}{2}\right) .\left(1-\frac{s}{n}\right)(n+1)^{s} \tag{10}\\
& \frac{1}{\Gamma(1-w)} \cong(1-w)\left(1-\frac{w}{2}\right) .\left(1-\frac{w}{n}\right)(n+1)^{w} \tag{11}
\end{align*}
$$

Fig1. The function $1 / \Gamma(1-s), s<1$, and its approximation from Eq.(10) and (11)For different values of $n=1,2,3,5,10$. The green line is exact.

The substitution of Eq.(10) and Eq.(11) into Eq.(8) yields an approximation $F_{n}(s, w)$ to $F(s, w)$
$F_{n}(s, w)=(1-s)\left(1-\frac{s}{2}\right) . .\left(1-\frac{s}{n}\right)(1-w)\left(1-\frac{w}{2}\right) . .\left(1-\frac{w}{n}\right)(n+1)^{s+w} G(s, w)(12)$
The function $f_{n}\left(t_{1}, t_{2}\right)$ that is Mellin transformed into $F_{n}(s, w)$ constitute an approximation to the solution $f\left(t_{1}, t_{2}\right)$.now we prove that $f_{n}\left(t_{1}, t_{2}\right)$ can be expressed in terms of $g\left(u_{1}, u_{2}\right)$ and its first n derivatives.In fact the known properties $M\left[\frac{t_{1}}{k} \frac{d}{d t_{1}} g\left(t_{1}, t_{2}\right)\right]=-\frac{s}{k} G(s, w)$ and $M\left[\frac{t_{2}}{k} \frac{d}{d t_{2}} g\left(t_{1}, t_{2}\right)\right]=-\frac{w}{k} G(s, w)$ and $M\left[\frac{t_{1} t_{2}}{k^{2}} \frac{d}{d t_{1}} \frac{d}{d t_{2}} g\left(t_{1}, t_{2}\right)\right]=-\frac{s w}{k^{2}} G(s, w)$ show that

$$
\begin{equation*}
M\left[\left(1+\frac{t_{1}}{k} \frac{d}{d t_{1}}+\frac{t_{2}}{k} \frac{d}{d t_{2}}+\frac{t_{1} t_{2}}{k^{2}} \frac{d}{d t_{1}} \frac{d}{d t_{2}}\right) g\left(t_{1}, t_{2}\right)\right]=\left(1-\frac{s}{k}\right)\left(1-\frac{w}{k}\right) G(s, w) \tag{13}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left[\left(1+\frac{t_{1}}{k} \frac{d}{d t_{1}}+\frac{t_{2}}{k} \frac{d}{d t_{2}}+\frac{t_{1} t_{2}}{k^{2}} \frac{d}{d t_{1}} \frac{d}{d t_{2}}\right) g\left(t_{1}, t_{2}\right)\right]=\left[1+\frac{t_{1}}{k} \frac{d}{d t_{1}}\right]\left[1+\frac{t_{2}}{k} \frac{d}{d t_{2}}\right] g\left(t_{1}, t_{2}\right) \tag{14}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
L_{n}=\prod_{k=1}^{n}\left[1+\frac{t_{1}}{k} \frac{d}{d t_{1}}\right]\left[1+\frac{t_{2}}{k} \frac{d}{d t_{2}}\right] \tag{15}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
M\left[L_{n} g\left(t_{1}, t_{2}\right)\right]=\prod_{k=1}^{n} M\left[\left[\left[1+\frac{t_{1}}{k} \frac{d}{d t_{1}}\right]\left[1+\frac{t_{2}}{k} \frac{d}{d t_{2}}\right]\right] g\left(t_{1}, t_{2}\right)\right]=\prod_{k=1}^{n}\left(1-\frac{s}{k}\right)\left(1-\frac{w}{k}\right) G(s, w) \tag{16}
\end{equation*}
$$

By recalling the property $c^{s+w} G(s, w)=M\left[g\left(\frac{t_{1}}{c}, \frac{t_{2}}{c}\right)\right]$, we see that

$$
M\left[\prod_{k=1}^{n}\left[\left[1+\frac{t_{1}}{k(n+1)} \frac{d}{d t_{1}}\right]\left[1+\frac{t_{2}}{k(n+1)} \frac{d}{d t_{2}}\right]\right] g\left(\frac{t_{1}}{(n+1)}, \frac{t_{2}}{(n+1)}\right)\right]=\prod_{k=1}^{n}\left(1-\frac{s}{k}\right)\left(1-\frac{w}{k}\right)(n+1)^{s+w} G(s, w)
$$

So we can write the function $f_{n}\left(t_{1}, t_{2}\right)$ in the form

$$
\begin{align*}
f_{n}\left(t_{1}, t_{2}\right)=L_{n} g\left(u_{1}, u_{2}\right) & =\prod_{k=1}^{n}\left[\left[1+\frac{u_{1}}{k} \frac{d}{d u_{1}}\right]\left[1+\frac{u_{2}}{k} \frac{d}{d u_{2}}\right]\right] g\left(u_{1}, u_{2}\right) ; \quad u_{1}=\frac{t_{1}}{(n+1)}, u_{2}=\frac{t_{2}}{(n+1)} \\
& =\frac{1}{(n!)^{2}} \prod_{k=1}^{n}\left[\left[k+u_{1} \frac{d}{d u_{1}}\right]\left[k+u_{2} \frac{d}{d u_{2}}\right]\right] g\left(u_{1}, u_{2}\right) \tag{17}
\end{align*}
$$

According to the conclusion of lemma 2.2 in section. 2 we have

$$
\begin{equation*}
f_{n}\left(t_{1}, t_{2}\right)=\frac{1}{(n!)} \frac{d^{n}}{d u_{1}{ }^{n}} \frac{d^{n}}{d u_{2}{ }^{n}}\left(u_{1}{ }^{n} u_{2}{ }^{n} g\left(u_{1}, u_{2}\right)\right) ; \quad u_{1}=\frac{t_{1}}{(n+1)}, u_{2}=\frac{t_{2}}{(n+1)} \tag{18}
\end{equation*}
$$

If $\hat{f}_{c}(p, q)$ is known for $a \leq p \leq b$ and $c \leq q \leq d$, then $g\left(u_{1}, u_{2}\right)$ is given in the rang $\frac{1}{b} \leq u_{1} \leq \frac{1}{a} \quad$ and $\quad \frac{1}{d} \leq u_{2} \leq \frac{1}{c} \quad$,and Eqs.(17) or (18) yield $f_{n}\left(t_{1}, t_{2}\right)$ for $\frac{(n+1)}{b} \leq t_{1} \leq \frac{(n+1)}{a}$ and $\frac{(n+1)}{d} \leq t_{2} \leq \frac{(n+1)}{c}$.since the partial products of Eq.(10) and (11) converge to $\frac{1}{\Gamma(1-s)}$ and $\frac{1}{\Gamma(1-w)}, f_{n}$ is expected to better approximate the exact f for large n,both for continuous and discrete input data.The examples
of the next section illustrate the convergence of f_{n} to f when $g\left(u_{1}, u_{2}\right)$ has a known simple analytical expression.

4 .Analytical examples

4.1 .Example 1

For reconstructing $f\left(t_{1}, t_{2}\right)=\left(\ln t_{1}+\gamma\right)\left(\ln t_{2}+\gamma\right)$; (constant $\gamma=0.5772156 \ldots$... first we compute Laplace Carson transform $\hat{f}_{c}(p, q)=\ln p \ln q$ then by considering $u_{1}=\frac{1}{p}$ and $u_{2}=\frac{1}{q}$ we obtain $g\left(u_{1}, u_{2}\right)=\ln \frac{1}{u_{1}} \ln \frac{1}{u_{2}}$.by using Eq.(18) for this $g\left(u_{1}, u_{2}\right)$ we obtain

$$
f_{n}\left(t_{1}, t_{2}\right)=\frac{1}{(n!)} \frac{d^{n}}{d u_{1}{ }^{n}} \frac{d^{n}}{d u_{2}{ }^{n}}\left(u_{1}{ }^{n} u_{2}{ }^{n} \ln \frac{1}{u_{1}} \ln \frac{1}{u_{2}}\right) ; \quad u_{1}=\frac{t_{1}}{(n+1)}, u_{2}=\frac{t_{2}}{(n+1)} .
$$

Fig.2. Reconstruction of $f\left(t_{1}, t_{2}\right)=\left(\ln t_{1}+\gamma\right)\left(\ln t_{2}+\gamma\right)$ at $t_{1}=0 . .10, t_{2}=0 . .10$ from its two dimensional Laplace Carson transforms for selected values of n (in this section $n=5$).

4.2. Example 2

For reconstructing $f\left(t_{1}, t_{2}\right)=U\left(t_{1}-2\right) U\left(t_{2}-2\right)$ (unit step function) first we compute Laplace-Carson transform $\hat{f}_{c}(p, q)=e^{-2 p-2 q}$ then by consider $u_{1}=\frac{1}{p}$ and $u_{2}=\frac{1}{q}$ we obtain $\hat{f}_{c}(p, q)=e^{-\frac{2}{u_{1}}-\frac{2}{u_{2}}}$.by using Eq .(18) for this $g\left(u_{1}, u_{2}\right)$ we obtain

$$
f_{n}\left(t_{1}, t_{2}\right)=\frac{1}{(n!)} \frac{d^{n}}{d u_{1}{ }^{n}} \frac{d^{n}}{d u_{2}{ }^{n}}\left(u_{1}{ }^{n} u_{2}{ }^{n} e^{-\frac{2}{u_{1}-\frac{2}{u_{2}}}}\right) ; \quad u_{1}=\frac{t_{1}}{(n+1)}, u_{2}=\frac{t_{2}}{(n+1)} .
$$

Fig.3. Reconstruction of $f\left(t_{1}, t_{2}\right)=U\left(t_{1}-2\right) U\left(t_{2}-2\right)$ at $t_{1}=0 . .10, t_{2}=0 . .10$ from its two dimensional Laplace Carson transform for selected values of n (in this section $n=5$).

Fig.4. The exact plot of $f\left(t_{1}, t_{2}\right)=U\left(t_{1}-2\right) U\left(t_{2}-2\right)$ for $t_{1}=0 . .10, t_{2}=0 . .10$.

References

[1] C.Donalato, Analytical and numerical inversion of Laplace-Carson transform by a differential method, Italy, 2002, p298-309
[2] A.M.Makarov, Application of The Laplace-Carson method of integral transformation to the theory of unsteady visco-plastic flows, J.Engrg. Phs. Thermophys, 19(1970)94-99
[3] V.A.Ditkin and A.P.Prudnikov, Operational calculus in two variables and its applications, (English translation from Russian), Pergram Press (1962)
[4] R.S. Dahiya, computation of two-dimensional Laplace transforms, Rendiconti di atimatica, Roma 8, ser.vi (1975), 805-813.
[5] R.S. Dahia, Calculation of two-dimensional Laplace transform pairs-1,simon, A quarterly journal of Pure and Applied Mathematics 56 (1982), no. 1-2, 97-107
[6] G.E. Roberts and Kaufman,II., Table of Laplace transforms, Philadelphia:W.B. saunders co., 1966
[7] W.T. Weeks, Numerical inversion of Laplace transforms using Laguerre functions, J.ACM 13(1966) 419-429
[8] K.Singhal, J.Vlach, Numerical inversion of multi-dimensional Laplace transforms, proc. IEEE 63(1975) 1627-1628
[9] I.S. Gradshteyn, I, M.Ryzhik, Table of Integrals, series, and products, Academic, London, 1980

Received: November, 2009

