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Abstract
 
A differential method for recovering a function ),( 21 ttf  from its two dimensional 
Laplace-Carson transform ),(ˆ qpfpq  given as continuous or discrete data on a finite 

interval.The introduction of the variables 
q

u
p

u 1,1
21 ==  converts this transform into 

a Mellin convolution, with a transformed kernel involving the gamma function . the 

truncation of the infinite product representation of 
)1()1(

1
ws −Γ−Γ

leads to an 

approximate differential expression for the solution. 
 
Keywords: Two dimensional Laplace-Carson transform; two dimensional Mellin 
transform; Functional sequence; Inverse problems. 
 
 
1 .Introduction 
 
The Laplace–Carson transform provides a powerful method for analyzing linear 
systems. 
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In most problems solution inversion of Laplace-Carson transform involve numerous 
and complicated functions . Many interesting problems in physics lead to Laplace-
Carson transforms of which inversion are not expressed in terms of classified 
functions . Therefore, we are interested to have analytical or numerical method to 
solve these problems. 
C.Donalato’s[1] analytical one dimensional method implying Laplace-Carson 
transform and Mellin transform leads to functional sequence )(tfn  when ∞→n  
then )(tfn converge to )(tf .The extension of this method to two dimensional 
expressed in this paper without implying inversion two dimensional Laplace-Carson 
transform can Make a functional sequence ),( 21 ttfn  since ∞→n  converge to 
exact ),( 21 ttf . 
 
 
2 . Section 2 
 
In this section we express two lemmas and conclusion will be used in next 
section. 
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Conclusion 2.1 
Extension of lemma2.1 to two dimensional leads us 
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Lemma 2.2 
Let RRg →:  then  
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Proof  .According to lemma 2.1  
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Conclusion 2.2 
Extension of lemma2.2 to two dimensional leads us 
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 3. The inversion formula 
 

1.3 Two dimensional Laplace Carson Transform and Two dimensional 
Mellin Transform. 
 
Two Dimensional Laplace-Carson Transform ),(ˆ qpfc  of a real function ),( 21 ttf  

0, 21 ≥tt  Is defined by Ditkin and Prudnikov [3] 

                        212
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1
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),(),(ˆ 21 dtdtttfepqqpf qtpt
c ∫ ∫

∞ ∞
−−=                                        (1) 

We assume that ),(ˆ qpfc  is known for real positive values of qp, in the interval 
[ ] [ ]dcba ,,,  and wish to approximately reconstruct ),(ˆ qpfc  in the widest possible 

range of values of 21,tt ; in most applications, ),( 21 ttf  and hence ),(ˆ qpfc  are 
positive functions. 
An interesting property of the transform of Eq.(1) is brought out by supposing that 
the variable and functions involved are physical quantities.then we see 

that )1,1(ˆ
21 uu

fc ,unlike )1,1(ˆ
21 uu

f ,retains the physical dimensions of 

),( 21 ttf .Note that 
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Thus the new transformed function ),( 21 uug becomes physically alike to ),( 21 ttf ; 
in next section some examples will illustrate that ),( 21 uug , unlike ),(ˆ qpfc  or  

),(ˆ qpf  , constitutes by itself an approximate reconstruction of ),( 21 ttf . 
By multiplying and dividing by 21,tt the integrand, Eq(2) can be put in the form of 
a two dimensional mellin convolution product 
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The kernel of this integral equation has the proper from ),(
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Eq.(3) can be solved by taking its two dimensional Mellin transform, which for a 
function ),( yxh is defined by  
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We note that  
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Where Γ  denotes the usual gamma function.By Eq.(4) we can see that 
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Assuming the existence of the other transforms, we obtain from Eq.(3) 
),(),(),( wsFwsHwsG =   and hence  

 
                     ),(/),(),( wsHwsGwsF = = [ ] ),())1()1(/(1 wsGws −Γ−Γ             (8) 

G and H have a common region of analyticity.we can obtain ),( 21 ttf  from Eq.(5) 

which could be Mellin inverted . For this purpose instead of 
Γ
1  we employ 

representation of an infinite product. 
 
2.2 .Obtaining the approximate of inversion ),( wsF  

The infinite product representation of  
Γ
1  is (see,e,g.,[9,p,Eq.(8.322)])) 
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The truncation of this product after n terms provides an approximation for 
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The result can be simplified to 
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.1Fig The function 1),1(/1 <−Γ ss , and its approximation from Eq.(10) and 

(11)For different values of 10,5,3,2,1=n .The green line is exact. 
 
 
The substitution of Eq.(10) and Eq.(11) into Eq.(8) yields an approximation 
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The function ),( 21 ttfn  that is Mellin transformed into ),( wsFn  constitute an 
approximation to the solution ),( 21 ttf .now we prove that ),( 21 ttfn  can be 
expressed in terms of ),( 21 uug  and its first n derivatives.In fact the known 
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So we can write the function ),( 21 ttfn  in the form 
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According to the conclusion of lemma 2.2 in section.2 we have 

( )
)1(

,
)1(

;),(
)!(

1),( 2
2

1
12121

21
21 +

=
+

==
n
tu

n
tuuuguu

du
d

du
d

n
ttf nn

n

n

n

n

n               (18) 
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, nf  is expected to better approximate 

the exact f  for large n ,both for continuous and discrete input data.The examples  
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of the next section illustrate the convergence of nf  to f  when ),( 21 uug  has a 
known simple analytical expression. 
 
 
4 . Analytical examples 
 
4.1 . Example 1 
 
For reconstructing ))(ln(ln),( 2121 γγ ++= ttttf ; (constant ...5772156.0=γ ) first 
we compute Laplace Carson transform qpqpfc lnln),(ˆ = then by considering 
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.2.Fig Reconstruction of ))(ln(ln),( 2121 γγ ++= ttttf  at 10..0,10..0 21 == tt  
from its two dimensional Laplace Carson transforms for selected values of n  ( in 
this section n=5). 
 
4.2. Example 2 
 
 
 

),( 21 ttfn 

),( 21 ttf 
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For reconstructing )2()2(),( 2121 −−= tUtUttf  (unit step function) first we 

compute Laplace-Carson transform qp
c eqpf 22),(ˆ −−= then by consider 
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.3.Fig Reconstruction of )2()2(),( 2121 −−= tUtUttf  at 10..0,10..0 21 == tt  from 
its two dimensional Laplace Carson transform for selected values of n  (in this 
section n=5). 
 
 
 
 
 

),( 21 ttfn 
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.4.Fig The exact plot of )2()2(),( 2121 −−= tUtUttf  for 10..0,10..0 21 == tt . 
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