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1. Introduction

In the recent years, evolution problems with integral condition(s) have re-

ceived an increasing attention. The physical significance of integral conditions
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(mean, total flux, total energy, total mass, moments,...) has served as a fun-

damental reason for the interest carried to this type of problems.

The first investigation of such problems goes back to Cannon [3]. Later,

similar problems have been studied following different approaches. A detailed

survey is given in [1], [8] and [13].

Note that most of the papers on this type of problems were directed to

one-dimensional second order parabolic equations which combine classical and

integral boundary conditions. However, few works have been consecrated to

second order parabolic equations with purely integral boundary conditions,

among which, one quotes [1], [2] and [14], in which the authors proved the

existence, uniqueness and continuous dependence upon the data of a solution

by means of the energy-integral method, and the Rothe-time discretization

method.

In this paper, we are interested in some finite difference schemes for ap-

proximating the function u = u (x, t) of the following initial-boundary value

problem with purely integral conditions. Find a function u = u (x, t) satisfying

the one-dimensional diffusion equation:

∂u

∂t
− α

∂2u

∂x2
= f (x, t) , 0 ≤ x ≤ 1, 0 < t ≤ T,(1.1)

subject to the initial condition

u (x, 0) = ϕ(x), 0 ≤ x ≤ 1,(1.2)

and the integral conditions∫ 1

0

u (x, t) dx = E(t), 0 < t ≤ T,(1.3)

∫ 1

0

xu (x, t) dx = G(t), 0 < t ≤ T,(1.4)

where f, ϕ, E, and G are known functions, α and T are known positive con-

stants.

The paper is divided as follows. The mathematical model is given in Section

2. The modified backward Euler scheme for the solution of problem (1.1)-(1.4)

is described in Section 3. Finally, in Section 4, we discuss some numerical

computations for two test problems produced by the developed methods.

2. The mathematical model

In this Section, we follow [1] give a brief description of the mathematical

model of the quasi-static flexure of a thermoelastic rod. Let us consider a

rod 0 ≤ x ≤ 1, the temperature v = v(x, t) and the transverse displacement
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z = z(x, t). The quasi static flexure of thermoelastic rod can be described by

the coupled partial differential equations [9]:

λ
∂2v

∂x2
= κ

∂v

∂t
+ v0β

∂3z

∂x2∂t
,(2.1)

α
∂4z

∂x4
= β

∂2v

∂x2
,(2.2)

where λ is the thermal conductivity, κ is the specific heat at constant strain,

α is the flexural rigidity, β is a measure of the cross-coupling between thermal

and mechanical effects, v0 is a uniform reference temperature.

If we suppose that the initial temperature of the rod is κ(x), and the initial

displacement is γ(x); the ends x = 0 and x = 1 are clamped, namely

v(x, 0) = κ(x),(2.3)

z(x, 0) = γ(x),(2.4)

z(0, t) =
∂z(0, t)

∂x
= z(1, t) =

∂z(1, t)

∂x
= 0,(2.5)

the average temperature in the rod 0 ≤ x ≤ 1 is equal to μ(t), i.e.,∫ 1

0

v(x, t)dx = μ(t);(2.6)

and the difference between the heat exchange of the atmosphere on the end

x = 0 and the temperature on the end x = 1 is equal to ζ(t), then Newton’s

law imply

∂v(0, t)

∂x
+ v(0, t) − v(1, t) = ζ(t).(2.7)

We reformulate problem (2.1)-(2.7) into an equivalent form where the cou-

pled P. D. Eqs (2.1)-(2.2) is reduced to one equation, we then introduce a new

unknown function u defined as follows:

u(x, t) =
κ

v0

(v − v0) + β
∂2z

∂x2
,(2.8)

where u is the entropy. Then

λ
∂2v

∂x2
= v0

∂u

∂t
,(2.9)

and, therefore, the entropy is a solution of the heat equation:

λ
∂2u

∂x2
=

[
κ + v0

β2

α

]
∂u

∂t
.(2.10)

To deduce the initial condition on the entropy, we use the conditions (2.3) and

(2.4), yields
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u(x, 0) =
κ

v0

(κ(x) − v0) + βγ′′(x) = u0(x).(2.11)

To deduce the first boundary condition on the entropy, we integrate (2.8) over

[0, 1] with respect to x , by taking into account of (2.5) and (2.6), yields∫ 1

0

u(x, t)dx(2.12)

=
κ

v0

(∫ 1

0

v(x, t)dx −
∫ 1

0

v0dx

)
+ β

(
∂z(1, t)

∂x
− ∂z(0, t)

∂x

)

=
κ

v0
(μ(t) − v0) = E(t),

which is the average entropy. To conclude the second boundary condition, we

multiply equation (2.9) by the weight (1− x) and we integrate the result over

[0, 1] by taking into account the condition (2.7), we obtain∫ 1

0

xu(x, t)dx(2.13)

= E(t) +
λ

v0

∫ t

0

ζ(τ)dτ +

∫ 1

0

xu0(x)dx − E(0) = G(t),

which is the weighted average entropy. Then, instead of searching for a pair

(v, z) solution of (2.1)-(2.7), we search for the function u, solution of problem

(2.10)-(2.13).

3. A modified backward Euler method

First, we take a positive integers N and M. We divide the intervals [0, 1] and

[0, T ] into M and N subintervals of equal lengths Δx = 1/M and Δt = T/N,

respectively. The grid points (xi, tn) are given by

xi = iΔx, i = 0, 1, . . . , M,

tn = nΔt, n = 0, 1, ..., N.

By un
i , we denote the approximation to u at the i − th grid-point and n − th

time step. We also introduce the following notation:

δ2
xu

k
i = uk

i−1 − 2uk
i + uk

i+1.

We start with the approximation of equation (1.1) by using the modified back-

ward Euler method:

1

Δt

(
un+1

i − un
i

) − α

(
∂2u

∂x2

)n+1

i

= fn+1
i ,(3.1)
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where (
∂2u

∂x2

)n+1

i

≈ 1

(Δx)2
δ2

x

1 + 1
12

δ2
x

un+1
i ,(3.2)

which is fourth-order accurate [15]. If we set in (3.2),(
∂2u

∂x2

)n+1

i

= wn+1
i(3.3)

and apply operator
(
1 + 1

12
δ2

x

)
to both sides, we get

1

(Δx)2 δ2
xu

n+1
i =

(
1 +

1

12
δ2

x

)
wn+1

i ,

or

1

(Δx)2

(
un+1

i−1 − 2un+1
i + un+1

i+1

)
(3.4)

=
1

12
wn+1

i−1 +
10

12
wn+1

i +
1

12
wn+1

i+1 .

According to formula (3.1), we have

1

αΔt

(
un+1

i − un
i − Δt fn+1

i

)
=

(
∂2u

∂x2

)n+1

i

= wn+1
i .(3.5)

Then, by substituting (3.4) for i − 1, i, and i + 1 into (3.1), it yields

1

(Δx)2

(
un+1

i−1 − 2un+1
i + un+1

i+1

)

=
1

12αΔt

(
un+1

i−1 − un
i−1 − Δt fn+1

i−1

)

+
10

12αΔt

(
un+1

i − un
i − Δt fn+1

i

)

+
1

12αΔt

(
un+1

i+1 − un
i+1 − Δtfn+1

i+1

)
,

giving

(1 − 12�)un+1
i−1 + 2 (5 + 12�) un+1

i + (1 − 12�)un+1
i+1(3.6)

= un
i−1 + 10un

i + un
i+1 + Δt

(
fn+1

i−1 + 10fn+1
i + fn+1

i+1

)
,

for 1 ≤ i ≤ M − 1 and 1 ≤ n ≤ N, where � = αΔt/ (Δx)2 .

The initial condition (1.2) along t = 0 is

u0
i = ϕi, 0 ≤ i ≤ M.(3.7)

Owing to the fact that (3.6) represents M − 1 linear equations with M + 1

unknowns un+1
0 , un+1

1 , · · · , un+1
M , we must eliminate un+1

0 and un+1
M from the

system which are not known a priori here. For this purpose, we approximate
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the integral conditions (1.3) and (1.4) by Simpson’s rule which requires M to

be even. Setting M = 2m, we have

∫ 1

0

ω
(
x, tk

)
dx

=
Δx

3

(
ωk

0 + 4ωk
1 + 2ωk

2 + · · ·+ 2ωk
M−2 + 4ωk

M−1 + ωk
M

)
+ O

(
(Δx)4

)
,

so, we can write, for k = n, n + 1,

uk
0 + 4uk

1 + 2uk
2 + · · ·+ 2uk

M−2 + 4uk
M−1 + uk

M =
3Ek

Δx
,(3.8)

4 · x1u
k
1 + 2 · x2u

k
2 + 4 · x3u

k
3 + · · ·+(3.9)

+2xM−2u
k
M−2 + 4xM−1u

k
M−1 + xMuk

M =
3Gk

(Δx)2 ,

from where it comes

uk
M(3.10)

=
1

M

(
3Gk

(Δx)2 − (
4 · 1uk

1 + 2 · 2uk
2 + 4 · 3uk

3

+ · · ·+ 2 (M − 2) uk
M−2 + 4 (M − 1) uk

M−1

))
,

uk
0(3.11)

=
1

M

(
3MEk

Δx
− 3Gk

(Δx)2

− (
4 (M − 1) uk

1 + 2 (M − 2)uk
2

+4 (M − 3) uk
3 + · · ·+ 4 · 3uk

M−3

+2 · 2uk
M−2 + 4 · 1uk

M−1

))
.
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Then, substituting (3.11) into (3.6) for i = 1 and (3.10) into (3.6) for i = M−1,

we get, respectively, after some rearrangement

(− (1 − 12�) (6M − 4) + 12M)un+1
1(3.12)

− (1 − 12�)
(
(M − 4)un+1

2 + 4 (M − 3)un+1
3 + · · ·

+4 · 3un+1
M−3 + 2 · 2un+1

M−2 + 4 · 1un+1
M−1

)
= (− (6M − 4) + 12M)un

1 − (M − 4) un
2 − (4 (M − 3)un

3 + · · ·
+4 · 3un

M−3 + 2 · 2un
M−2 + 4 · 1un

M−1

)
−3M

Δx

(
(1 − 12�) En+1 − En

)

+
3

(Δx)2

(
(1 − 12�)Gn+1 − Gn

)

+MΔt
(
fn+1

0 + 10fn+1
1 + fn+1

2

)
,

− (1 − 12�)
(
4 · 1un+1

1 + 2 · 2un+1
2(3.13)

+4 · 3un+1
3 + · · · + 4 (M − 3) un+1

M−3

+ (M − 4)un+1
M−2

)
+ (− (1 − 12�) (6M − 4) + 12M) un+1

M−1

= − (
4 · 1un

1 + 2 · 2un
2 + 4 · 3un

3 + · · · + 4 (M − 3) un
M−3

+ (M − 4)un
M−2) + (6M + 4)un

M−1

)
+

3

(Δx)2
(− (1 − 12�)Gn+1 + Gn

)

+MΔt
(
fn+1

M−1 + 10fn+1
M + fn+1

M+1

)
.

Therefore, we obtain a linear system of equations (M − 1) × (M − 1) , by

setting (3.12) as the first, (3.13) as the (M − 1)−th, and (3.6) for 2 ≤ i ≤ M−2

as the other equations. Therefore, this system can be written in the following

way

AUn+1 = BUn + ΔtCn+1 + Dn+1,(3.14)

where

A = − (1 − 12�) P + 12Q,(3.15)

B = −P + 12Q,(3.16)
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6M − 4 M − 4 4 (M − 3) · · · · · · 4.3 2.2 4.1

−1 2 −1 0 0 · · · · · · 0

0 −1 2 −1 0
... 0

. . .
. . .

. . .
...

0
... 0

. . .
. . .

. . . 0

0 0 −1 2 −1

4.1 2.2 4.3 · · · · · · 4 (M − 3) M − 4 6M − 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.17)

Q =

⎛
⎜⎜⎜⎜⎜⎝

M 0

1
. . .

1

0 M

⎞
⎟⎟⎟⎟⎟⎠

,(3.18)

Cn+1 =

⎛
⎜⎜⎜⎜⎜⎝

M
(
fn+1

0 + 10fn+1
1 + fn+1

2

)
fn+1

1 + 10fn+1
2 + fn+1

3
...

fn+1
M−3 + 10fn+1

M−2 + fn+1
M−1

M
(
fn+1

M−2 + 10fn+1
M−1 + fn+1

M

)

⎞
⎟⎟⎟⎟⎟⎠

,(3.19)

Dn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3M
Δx

((1 − 12�) En+1 − En) + 3
(Δx)2

((1 − 12�) Gn+1 − Gn)

0
...

0

− 3
(Δx)2

((1 − 12�)Gn+1 − Gn)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(3.20)

Un =

⎛
⎜⎜⎜⎜⎜⎜⎝

un
1
...

...

un
M−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Un+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

un+1
1
...

...

un+1
M−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(3.21)
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4. Numerical test results

In this section, we report some results of numerical computations using

finite difference schemes proposed in the previous section. These techniques

are applied to solve three test problems.

Test 1. The test problem is given as follows:

∂u

∂t
=

∂2u

∂x2
− exp− (x + t) ,(4.1)

u (x, 0) = exp (−x) ,(4.2)

∫ 1

0

u (x, t) dx =
(
1 − e−1

)
cosh (t) ,(4.3)

∫ 1

0

xu (x, t) dx =
(
1 − 2e−1

)
cosh (t) .(4.4)

The analytical solution of this problem is:

u(x, t) = exp (−x) cosh (t) .(4.5)

The relative error computed by Uapprox−Uexact

Uexact
are shown in Table I.

x Uapprox. Uexact Error

0.20 0.885107197 0.885123767 -0.000018721

0.40 0.724664482 0.724198494 0.000643039

0.60 0.593305097 0.592891910 0.000696416

0.80 0.485757129 0.485839980 -0.000170560
Table I

2. The second problem is given as follows

∂u

∂t
=

∂2u

∂x2
,(4.6)

u (x, 0) = sin (πx) ,(4.7)

∫ 1

0

u (x, t) dx =
2

π
exp

(−π2t
)
,(4.8)

∫ 1

0

xu (x, t) dx =
1

π
exp

(−π2t
)
.(4.9)

The analytical solution is:

u(x, t) = exp
(−π2t

)
sin (πx) .(4.10)

The computed results are shown in Table II.
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x Uapprox. Uexact Error

0.20 0.88505949 0.88510720 0.00005390

0.40 0.72591464 0.72466448 -0.00172515

0.60 0.59443146 0.59330510 -0.00189845

0.80 0.48559736 0.48575713 0.00032890
Table II

3. The third problem is given as follows

∂u

∂t
− ∂2u

∂x2
= −2 (x2 + 1 + t)

(1 + t)3 ,(4.11)

u (x, 0) = x2,(4.12)

∫ 1

0

u (x, t) dx =
1

3 (1 + t)2 ,(4.13)

∫ 1

0

xu (x, t) dx =
1

4 (1 + t)2 .(4.14)

The analytical solution of this problem is

u(x, t) =

(
x

1 + t

)2

.(4.15)

The computed results are shown in Table III:

x Uapprox. Uexact Error

0.20 0.885107197 0.885123767 -0.000018721

0.40 0.724664482 0.724198494 0.000643039

0.60 0.593305097 0.592891910 0.000696416

0.80 0.485757129 0.485839980 -0.000170560
Table III

5. Conclusion

In this article, a modified backward Euler schemes is developed for one-

dimensional heat equation with purely integral conditions. This method is

first-order accurate in time and fourth-order accurate in space, and it is scheme

even more implicit: an implicit scheme plus implicit boundary conditions.

They are a highly accurate numerical integration, which is stable and absorbent

of error. Numerical examples are provided to confirm the accuracy. The

authors plan to generalize this method to fourth-order accurate in time and

space.
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