A Modified Mann Iteration Process for Common Fixed Points of an Infinite Family of Nonexpansive Mappings in Banach Spaces

Wei-Qi Deng

College of Statistics and Mathematics Yunnan University of Finance and Economics Kunming, Yunnan, 650221, P.R. China dwq1273@126.com

Abstract

Let E be a real uniformly convex Banach space and K a nonempty closed convex subset of E. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings from K to itself with $F := \{x \in K : T_i x = x, \forall i \ge 1\} \neq \emptyset$. For an arbitrary initial point $x_1 \in K$, the modified Mann iteration scheme $\{x_n\}$ is defined as follows: $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n^* x_n, n \ge 1$, where $T_n^* = T_i$ with i satisfying: $n = [(k - i + 1)(i + k)/2] + [1 + (i - 1)(i + 2)/2], k \ge i - 1$, and $\{\alpha_n\}$ is a sequence in [a, 1 - a] for some $a \in (0, 1)$. Under some suitable conditions, the strong and weak convergence theorems of $\{x_n\}$ to a common fixed point of the nonexpansive mappings $\{T_i\}_{i=1}^{\infty}$ are obtained. The results presented in this paper extend those of the authors whose research areas are limited to the situation where the operators in the iteration procedure is just a finite family of nonexpansive mappings. Furthermore, for each T_i , a faster rate of convergence of $\{x_n\}$ to the common fixed point of $\{T_i\}_{i=1}^{\infty}$ is obtained.

Mathematics Subject Classifications: 47H09, 47J25

Keywords: Nonexpansive mappings; Strong and weak convergence; Common fixed point; Modified Mann iteration

1 Introduction

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. A self-mapping $T: K \to K$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$. Iterative techniques for approximating fixed points of nonexpansive mappings have been studied by various authors(see, e.g., [1–4])who used the Mann iteration process or the Ishikawa process. In 2001, Xu and Ori [5] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_i : i \in I\}$, where $I = \{1, 2, ..., N\}$. For any initial point $x_0 \in K$:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \tag{1.1}$$

where $T_n = T_{n(mod N)}$, the mod function N takes values in I, and $\{\alpha_n\}$ is a real sequence in (0, 1). They proved the weak convergence of the process above to a common fixed point of the finite family of nonexpansive mappings.

Inspired and motivated by those work mentioned above, in this paper, we will construct a modified Mann iteration scheme for approximating common fixed points of an infinite family of nonexpansive mappings $\{T_i\}_{i=1}^{\infty}$ and to prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.

2 Preliminaries

A Banach space E is said to satisfy Opial's condition if, for any sequence $\{x_n\}$ in $E, x_n \rightarrow x$ implies that

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|$$
(2.1)

for all $y \in E$ with $y \neq x$, where $x_n \rightharpoonup x$ denotes that $\{x_n\}$ converges weakly to x.

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if whenever $\{x_n\}$ is a sequence in D(T) such that $\{x_n\}$ converges weakly to $x^* \in D(T)$ and $\{Tx_n\}$ converges strongly to p, then $Tx^* = p$.

We need the following lemmas for our main results.

Lemma 2.1. [6] Let $\{a_n\}, \{\delta_n\}$, and $\{b_n\}$ be sequences of nonnegative real numbers satisfying

$$a_{n+1} \le (1+\delta_n)a_n + b_n, \quad \forall n \ge 1, \tag{2.2}$$

if $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then $\lim_{n\to\infty} a_n$ exists.

Lemma 2.2. [7] Let E be a real uniformly convex Banach space and let a, b be two constant with 0 < a < b < 1. Suppose that $\{t_n\} \subset [a, b]$ is a real sequence and $\{x_n\}, \{y_n\}$ are two sequences in E. Then the conditions

$$\lim_{n \to \infty} \|t_n x_n + (1 - t_n) y_n\| = d, \limsup_{n \to \infty} \|x_n\| \le d, \limsup_{n \to \infty} \|y_n\| \le d \qquad (2.3)$$

imply that $\lim_{n\to\infty} ||x_n - y_n|| = 0$, where $d \ge 0$ is a constant.

Lemma 2.3. [8] Let E be a real uniformly convex Banach space, let K be a nonempty closed convex subset of E, and let $T : K \to K$ be a nonexpansive mapping. Then I - T is demi-closed at zero.

3 Main Results

Lemma 3.1. Let E be a real uniformly convex Banach space and K a nonempty closed convex subset of E. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings from K to itself. For an arbitrary initial point $x_1 \in K$, the modified Mann iteration scheme $\{x_n\}$ is defined as follows:

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n^* x_n, n \ge 1,$$
(3.1)

where $\{\alpha_n\}$ is a sequence in [a, 1-a] for some $a \in (0, 1)$ and $T_n^* = T_i$ with i satisfying the following equation:

$$n = [(k - i + 1)(i + k)/2] + [1 + (i - 1)(i + 2)/2], k \ge i - 1,$$
(3.2)

where k is a nonnegative integer. That is

$$T_1^* = T_1, T_2^* = T_1, T_3^* = T_2, T_4^* = T_1, T_5^* = T_2, T_6^* = T_3, T_7^* = T_1, T_8^* = T_2, \dots$$

If $F := \{x \in K : T_i x = x, \forall i \ge 1\} \neq \emptyset$, then

- (1) $\lim_{n\to\infty} ||x_n q|| exists, \forall q \in F;$
- (2) $\lim_{n \to \infty} d(x_n, F) exists, where \ d(x_n, F) = \inf_{q \in F} \|x_n q\|;$
- (3) $\lim_{n \to \infty} ||x_n T_i x_n|| = 0, \forall i \ge 1.$

Proof.(1) For any $q \in F$, by (3.1), we have

$$||x_{n+1} - q|| = ||(1 - \alpha_n)(x_n - q) + \alpha_n(T_n^* x_n - q)||$$

$$\leq (1 - \alpha_n)||x_n - q|| + \alpha_n||x_n - q||$$

$$= ||x_n - q||.$$
(3.3)

It follows from Lemma 2.1 that $\lim_{n\to\infty} ||x_n - q||$ exists.

(2) This conclusion can be easily shown by taking the infimum in (3.3) for all $q \in F$.

(3) Assume, by the conclusion of (1), $\lim_{n\to\infty} ||x_n - q|| = d$. That is

$$\lim_{n \to \infty} \| (1 - \alpha_n) (x_n - q) + \alpha_n (T_n^* x_n - q) \| = d.$$
(3.4)

In addition,

$$\limsup_{n \to \infty} \|T_n^* x_n - q\| \le \limsup_{n \to \infty} \|x_n - q\| = d,$$
(3.5)

and hence, it follows from (3.4), (3.5) and Lemma 2.2 that

$$\lim_{n \to \infty} \|x_n - T_n^* x_n\| = 0.$$
(3.6)

On the other hand, since $||x_{n+1} - x_n|| = \alpha_n ||x_n - T_n^* x_n||$, we obtain, by (3.6),

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.7)

By induction, for any nonnegative integer j, we also have

$$\lim_{n \to \infty} \|x_{n+j} - x_n\| = 0.$$
(3.8)

For each $i \geq 1$, since

$$\begin{aligned} \|x_{n} - T_{n+i}^{*}x_{n}\| &\leq \|x_{n} - x_{n+i}\| + \|x_{n+i} - T_{n+i}^{*}x_{n}\| \\ &\leq \|x_{n} - x_{n+i}\| + \|x_{n+i} - T_{n+i}^{*}x_{n+i}\| \\ &+ \|T_{n+i}^{*}x_{n+i} - T_{n+i}^{*}x_{n}\| \\ &\leq 2\|x_{n} - x_{n+i}\| + \|x_{n+i} - T_{n+i}^{*}x_{n+i}\|, \end{aligned}$$
(3.9)

it follows from (3.6) and (3.8) that

$$\lim_{n \to \infty} \|x_n - T_{n+i}^* x_n\| = 0.$$
(3.10)

Now, for each $i \ge 1$, we claim that

$$\lim_{n \to \infty} \|x_n - T_i x_n\| = 0.$$
 (3.11)

As a matter of fact, setting

$$n = N(k, i) + i,$$

where N(k,i) = [(k-i+1)(i+k)/2 + (1+(i-1)(i+2)/2)] - i, we obtain that

$$\begin{aligned} \|x_n - T_i x_n\| &\leq \|x_n - x_{N(k,i)}\| + \|x_{N(k,i)} - T_i x_n\| \\ &\leq \|x_n - x_{N(k,i)}\| + \|x_{N(k,i)} - T_{N(k,i)+i}^* x_{N(k,i)}\| \\ &+ \|T_{N(k,i)+i}^* x_{N(k,i)} - T_i x_n\| \\ &= \|x_n - x_{N(k,i)}\| + \|x_{N(k,i)} - T_{N(k,i)+i}^* x_{N(k,i)}\| \\ &+ \|T_i x_{N(k,i)} - T_i x_n\| \\ &\leq 2\|x_n - x_{N(k,i)}\| + \|x_{N(k,i)} - T_{N(k,i)+i}^* x_{N(k,i)}\| \\ &= 2\|x_n - x_{n-i}\| + \|x_{N(k,i)} - T_{N(k,i)+i}^* x_{N(k,i)}\|. \end{aligned}$$
(3.12)

Then, since $N(k,i) \to \infty$ as $n \to \infty$, it follows from (3.8) and (3.10) that (3.11) holds obviously. This completes the proof.

Theorem 3.2. Let E be a real uniformly convex Banach space and K a nonempty closed convex subset of E. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings from K to itself. Suppose that $\{x_n\}$ is a sequence defined by (3.1). If $F := \{x \in K : T_i x = x, \forall i \ge 1\} \neq \emptyset$ and there exist $T_{i_0} \in \{T_i\}_{i=1}^{\infty}$ and a nondecreasing function $f : [0, \infty) \rightarrow [0, \infty)$ with f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$ such that $f(d(x_n, F)) \le ||x_n - T_{i_0}x_n||$ for all $n \ge 1$, then $\{x_n\}$ converges strongly to some common fixed point of $\{T_i\}_{i=1}^{\infty}$.

Proof. Since

$$f(d(x_n, F)) \le ||x_n - T_{i_0}x_n||,$$

by taking limsup as $n \to \infty$ on both sides in the inequality above, we get

$$\lim_{n \to \infty} f(d(x_n, F)) = 0,$$

which implies $\lim_{n\to\infty} d(x_n, F) = 0$ by the definition of the function f.

Now we will show that $\{x_n\}$ is a Cauchy sequence. Since $\lim_{n\to\infty} d(x_n, F) = 0$, then for any $\epsilon > 0$, there exists a positive integer N such that $d(x_n, F) < \epsilon/2$ for all $n \ge N$. On the other hand, there exists a $p \in F$ such that $||x_N - p|| = d(x_N, F) < \epsilon/2$, because $d(x_N, F) = \inf_{q \in F} ||x_N - q||$ and F is closed.

Thus, for any $n, m \ge N$, it follows from (3.3) that

$$||x_n - x_m|| \le ||x_n - p|| + ||x_m - p|| \le 2||x_N - p|| < \epsilon.$$

This implies that $\{x_n\}$ is a Cauchy sequence. Thus, there exists a $x \in K$ such that $x_n \to x$ as $n \to \infty$, since E is complete. Then, $\lim_{n\to\infty} d(x_n, F) = 0$ yields that d(x, F) = 0. Further, it follows from the closedness of F that $x \in F$. This completes the proof.

Theorem 3.3. Let *E* be a real uniformly convex Banach space satisfying Opial's condition and *K* a nonempty closed convex subset of *E*. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings from *K* to itself. Suppose that $\{x_n\}$ is a sequence defined by (3.1). If $F := \{x \in K : T_i x = x, \forall i \ge 1\} \neq \emptyset$, then $\{x_n\}$ converges weakly to some common fixed point of $\{T_i\}_{i=1}^{\infty}$.

Proof. For any $q \in F$, by Lemma 3.1, we know that $\lim_{n\to\infty} ||x_n - q||$ exists. We now prove that $\{x_n\}$ has a unique weakly subsequential limit in F. First of all, Lemmas 2.3 and 3.1 guarantee that each weakly subsequential limit of $\{x_n\}$ is a common fixed point of $\{T_i\}_{i=1}^{\infty}$. Secondly, Opial's condition guarantees that the weakly subsequential limit of x_n is unique. Consequently, $\{x_n\}$ converges weakly to a common fixed point of $\{T_i\}_{i=1}^{\infty}$. This completes the proof.

Remark 3.4. The results presented in this paper extend those of the authors whose research areas are limited to the situation where the operators used in the iteration procedure is just a finite family of nonexpansive mappings. Furthermore, for each T_i , the rate of convergence of $\{x_n\}$ to the common fixed point of $\{T_i\}_{i=1}^{\infty}$ is greatly enhanced because of the gradual increase of span of the operator.

References

- S.S.Chang, Y.J.Cho, H.Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J.Korean Math. Soc. 38(2001)1245–1260.
- [2] S.Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 73(1967)61–67.
- [3] M.O.Oslike, A.Udomene, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32(2000)1181–1191.
- [4] J.Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158(1991)407–413.
- [5] H.K.Xu, R.Ori, An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(2001)767–773.
- [6] M.O.Oslike, S.C. Aniagbosor and G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, PanAmer. Math. J., 12(2002)77-88.
- [7] J.Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991)153–159.
- [8] J.Górnicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Commentationes Mathematicae Universitatis Carolinae, 30(1989)249–252.

Received: October, 2009