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Abstract
This note is devoted to study the output stabilizability of a simpli-

fied and a one-dimensional diffusion equation. Necessary and sufficient
conditions for the system to be output stabilizable will be given. These
conditions are given in terms of the eigenvalues of the infinitesimal gen-
erator and the Fourier coefficients of input and output operators.
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1 Introduction

In this note, we consider the output stabilizability of the diffusion equation on
the interval (0, 1):

⎧⎨
⎩

∂z
∂t

= ∂2z
∂ξ2 − α∂z

∂ξ
+ kz + b(ξ)u(t)

z(ξ, 0) = z0(ξ)
z(0, t) = z(1, t) = 0

(1)

where b ∈ L2 (0, 1), α > 0 and k > 0.
With the output function given by

y(t) =

∫ 1

0

exp(−αξ)c(ξ)z(ξ, t)dξ. (2)

Take H = L2 (0, 1) to be the Hilbert space with the weighted inner product

〈f, g〉 =

∫ 1

0

exp(−αξ)f(ξ)g(ξ)dξ. (3)
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The system (1),(2) can be rewritten in the abstract form with state space H

.
x (t) = Ax(t) + Bu(t), x(0) = x0 (4)

where B = b, y(t) = 〈 c, z(., t)〉
H

= Cz(., t).

A = A0 + kI, and A0h =
d2h

dξ2
− α

dh

dξ
(5)

for h in the domain of A0 given by

D (A0) =

{
h : h, dh

dξ
are absolutely continuous

and d2h
dξ2 ∈ H, h (0) = h (1) = 0

}
(6)

It is no hard to show that A is self-adjoint with eigenvalues λn = −α2

4
−n2π2+k

and normalized eigenvectors φn(ξ) =
√

2 exp (αξ/2) sin (nπξ), n ∈ N, which
form an orthonormal basis for L2 (0, 1).

A focus of this paper is to give a criterion for the output stabilization by a
linear bounded feedback u = Fx, F ∈ L(H, R). The motivation for considering
this class of systems is given by the work of [2], that gave a result on state
stabilizability for a class of distributed parameter systems.

The paper is structured as follows. In second section, we shall review
some well-known concepts of approximate controllability, state and output
stabilizability for infinite dimensional systems defined in Hilbert spaces.

The third section deals with controllability and stabilization for the class
of systems studied here. A fully explicit description of the controllable and
uncontrollable subspaces for this class of systems is given in section 3. We also
give a criterion for output stabilizability. Finally, we shall conclude the paper
with some examples.

2 Preliminary Notes

In the beginning of this section let us recall some definitions. Consider the
abstract system (S) with the state given by

.
x (t) = Ax(t) + Bu(t), x(0) = x

0
(7)

and the output given by

y(t) = Cx(t) (8)

with the following hypothesis:
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(i) x(t) ∈ H (the state space), u(t) ∈ U (the input space) and y(t) ∈ Y
(the output space), where H , U and Y are always intended infinite dimensional
Hilbert spaces unless otherwise stated;

(ii) B and C are linear and continuous operators, i.e., B ∈ L(U,H), C ∈
L(H, Y );

(iii) The operator A is an infinitesimal generator of a C0-semigroup S(t)
on the state space H . As usual u, x, y represent respectively the input, state
and output of the system (7) and (8).

Definition 2.1 The system (7) (or the pair (A,B)) is approximately con-
trollable if N = {0}.

Where N =
⋂
t≥0

ker B∗S∗ (t) .

L = N⊥ and N are called, the controllable and uncontrollable subspaces of
the system (7), respectively.

Following [6], we can decompose the state space H as L ⊕ N and then A,
B and C are represented by the operators matrix

A =

(
A11 0
0 A22

)
, B =

(
B1

0

)
, C =

[
C

1
C

2

]
. (9)

Using these operators, we arrive at the split case:⎧⎨
⎩

.
x1 = A11x1 + B1u
.

x
2

= A
22

x
2

y = y1 + y2

(10)

where y
i
= C

i
x

i
, for i = 1, 2.

Definition 2.2 The pair (A, B) is called (exponentially ) stabilizable if
there is an F ∈ L(H, U) such that the semigroup S

A+BF
(t) is (exponentially)

asymptotically stable.
Where S

A+BF
(t) is the semigroup generated by A + BF .

It follows immediately that if the control is given by the feedback u = Fx,
for all x0 ∈ H there exists positive M and ω such that

‖x (t)‖ ≤ M exp(−ωt) ‖x0‖
and therefore x (t) → 0, if t → ∞.

Definition 2.3 The system (7), (8) is output stabilizable by a bounded feed-
back if there is an F ∈ L(H, U) such that the output y(t) of the closed system

.
x (t) = (A + BF )x(t), x(0) = x0 (11)

is exponentially stable, i.e., y(t) converges to zero when t → ∞ , for every
x0 ∈ H.

See e.g.,[1],[5], [6].
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3 Main Results

Under assumption about our system operator A, A and S (t) have the spectral
decompositions

Ax =
∞∑

n=1

λn.E(λn)x for x ∈ D(A) (12)

S(t) =
∞∑

n=1

exp (λnt)E(λn) (13)

where E(λn) are the spectral projections associated with the eigenvalues λn of
A and are given by

E(λn) = 〈. , φn〉φn. (14)

Furthermore, x ∈ H also has the decomposition

x =

∞∑
n=1

E(λn)x. (15)

Proposition 3.1 The system (4) (or the pair (A, b)) is (exponentially) stabi-
lizable if and only if the operator A22 is (exponentially) stable.

Proof: Since (A11 , B1) is approximately controllable by construction. Then,
by [5] it follows that the pair (A11 , B1) is exponentially stabilizable. From [6]
we can get directly the desired result.

Before we shall prove our main result, we need some technical lemmas.

Lemma 3.2 The uncontrollable subspace N of the system (4) is of the fol-
lowing form

N =span {φn, n ∈ J ⊂ N / B∗φn = 0} (16)

where B∗ = 〈 b, .〉
H

and span {en, n ∈ I} denotes the closed subspace generated
by the vectors en, n ∈ I.

Proof: By the definition of N and according to [4], this subspace is closed
and is invariant for S∗ (t) = S (t). Then by the proof of theorem IV.6 in [3],
N is of the following form

N =
∑
n∈J

E(λn)N and E(λn)N ⊂ N for all n in J
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where J = {n / E(λn) N �= {0}} . We have B∗S∗ (t)x = 0 if and only if
for all t ≥ 0

∞∑
n=1

exp(λnt)〈x, φn〉 〈 b, φn〉 = 0

First let x ∈ E(λn0
)N , x �= 0, for a certain n0 ∈ J . Then, since E(λn0

)N
⊂ N , it follows from [7] that

〈x, φn0
〉〈 b, φ

n0
〉 = 0 (17)

Rewriting equation (17) gives

B∗φn0
= 0.

This shows that

N ⊂ span {φn, n ∈ J ⊂ N / 〈 b, φn〉H = 0}

Now it remains to verify that φn ∈ N , where 〈 b, φn〉H = 0 for n ∈ J . But
the proof of this part is easy and will be omitted here.

Using the precise description of N and the fact that L = N⊥ one can
immediately get.

Lemma 3.3 The controllable subspace L of the system (4) is given by

L = span {φn / 〈 b, φn〉H
�= 0} . (18)

As a main result of this paper we establish the following proposition:

Proposition 3.4 The system (4) is output stabilizable if and only if

λn < 0 for all n in K, (19)

where K = { n / 〈 c, φn〉 �= 0 and 〈 b, φn〉 = 0 }.

Proof: From [6] we have that A
ii

is the infinitesimal generator of a C0-
semigroup S

i
(t) on H

i
, for i = 1, 2. H1 = L, H2 = N .

Furthermore, it follows that with respect to the spectral decomposition of
A we have

S
1
(t) =

∑
n∈I

exp(λnt)E(λn) , S
2
(t) =

∑
n∈�−I

exp(λnt)E(λn)
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where I = {n / 〈 b, φn〉 �= 0}.
According to the proof of proposition 3.1, it follows that the output y

of the system (4) is exponentially stabilizable if and only if the output y2 is
exponentially stable.

In order to study the stability of the output y
2
(t) = C

2
x

2
(t) on N , we

again consider the subsystem

{ .
x2 = A22x2 , x2(0) = x02

y2 = C2x2

(20)

where x(0) = x0 =

[
x01

x02

]
∈ L ⊕ N .

The output y
2
(t) = C

2
S

2
(t) x

02
of the subsystem (20) is given by

y2 (t) =
∑

n∈�−I

exp(λnt)〈x0 , φn〉〈 c, φn〉 (21)

Using a similar argument as above one can decompose the state space N of
the subsystem (20) as M ⊕W , where M =

⋂
t≥0

ker C2S2 (t) is the unobservable

subspace of the pair (C2, A22) and W = M⊥ is the observable subspace of the
subsystem (20).

The operators A22 , C2 may be written in the form

A
22

=

(
A

1

22
0

0 A
2

22

)
, C

2
=

[
0 C

2

2

]
(22)

Subsystem (20) can then be written as:⎧⎨
⎩

.
x

1
2 = A1

22x
1
2

.
x

2
2 = A2

22x
2
2

y2 = C2
2x

2
2

(23)

where x02 =

[
x1

02

x2
02

]
∈ M ⊕ W .

The stability of the output y2on N can then be analyzed by studying it
on the observable subspace W of the subsystem (20). A similar argument as
that used above can be used to show that the observable subspace of the pair
(C2 , A22) is given by

W = span {φn / 〈 c, φn〉 �= 0} (24)

and the output y2 (t) = C
2

2
S

2

2
(t) x

2

02
of the subsystem (20) is given by

y2 (t) =
∑
n∈K

exp(λnt)〈x0 , φn〉〈 c, φn〉 (25)
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where K = { n / 〈 c, φn〉 �= 0 and 〈 b, φn〉 = 0 } , S
i

2
(t) being the semi-

group generated by A
i

22
for i = 1, 2.

The necessary condition is straightforward. So we concentrate on the Suf-
ficiency. From [7] and [5] it follows that if λn < 0 for all n in K, then the
output y2 (t) is exponentially stable. Hence the output y (t) of the system (4)
is exponentially stabilizable.

4 Examples

Example 4.1 By choosing

b(ξ) = χ[p1,q1] (ξ) , c(ξ) = χ[p2,q2] (ξ) , (26)

where χ[ a, b] denotes the characteristic function of the interval [a, b]. Straight-
forward calculations show that

{
bn = −2

√
2α

α2+4n2π2 [e
−αq1

2 An,q1− e
−αp1

2 An,p1]

cn = −2
√

2α
α2+4n2π2 [e

−αq2
2 An,q2

− e
−αp2

2 An,p2]
(27)

where cn = 〈c, φn〉 , bn = 〈b, φn〉, n ∈ N

An,m = (sin(nπm) + (2nπ/α) cos(nπm)).
Take p1 = p2 = 1/4, q1 = 1/2 and q2 = 3/4. Since (A, b) is controllable it

is clear that the output of the system (4) is exponentially stabilizable.

Example 4.2 In this example we take α = 0 and

b(ξ) = χ[ 1
4
, 3
4 ]

(ξ) , c(ξ) = χ[ 1
4
, 1
2 ]

(ξ) . (28)

Elementary calculations show then that

bn = 〈b(ξ), φn(ξ)〉L2(
1
4

, 3
4
) = −2

√
2

nπ
sin

[nπ

2

]
sin

[nπ

4

]
, (29)

cn = 〈c(ξ), φn(ξ)〉L2(
1
4

, 1
2
) = −2

√
2

nπ
sin

[nπ

8

]
sin

[
3nπ

8

]
. (30)

A simple calculation show that the index set K takes the form

K = {8p + 2, 8p + 4, 8p + 6; p ∈ N} . (31)

Thus concerning proposition 3.4, we have that for k = π2 the stabilizability
of the output y(t) = 〈c(ξ),z〉L2(0,1) is achieved.
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