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Abstract

In this paper, we define the matrices with arithmetic-geometric-harmonic

means of forms A:(%j : Gz(\/ﬁ) : A:(_Zi_] . After we study
" I+J nn
Euclidean norms of these matrices and their Hadamard inverses.

nn
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1 Introduction

For positive real numbers a and b, arithmetic-geometric-harmonic mean

inequality
2ab a+b
——<+ab<
a+b 2
Generally,
AM (X, %y X, ) = 220Ky X e,

n

G.M.0X, Xy %) = XXXy (X Xy Xy €07,
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H.M.(X,X,,...,X,) = n(%+xi+...+iJ (X, Xy X, €07),

2 n

where A.M., G.M. and H.M. denote arithmetic, geometric, harmonic mean of
numbers x, X,,..., X, respectively.

In [7], Heinz and Heron means that interpolate between the geometric and
arithmetic mean are considered. Comparison inequalities between them are
established. Operator versions of there inequalities are obtained. In [3], for

positive semi-definite nxn matrices the inequality 4| AB| < H(A+ B)ZH is shown to

hold for every unitarily invariant norm. Sagae and Tanabe give new upper and
lower bounds for the arithmetic, geometric and harmonic means of a set of
positive definite matrices [2]. As well as, some inequalities related to arithmetic-
geometric were proved in [1,5, 6].

Mathias show that if x. >0 andq> p >0 the nxn matrices

\/ij XX and xP +x!
X+ X | [x.X; X! + X
are positive definite and relate these facts to some matrix valued arithmetic-
geometric- harmonic mean inequalities-some of which involve Hadamard
products and others unitarily invariant norms [4].
In this study, firstly we define the matrices which entries are consist of
arithmetic, geometric and harmonic means. After, we study Euclidean norms of
these matrices and give some numerical examples. Now, we give some

preliminaries.
Gamma(n) function is defined as:

m n n+l
gamma(n)z{zlnk —n }

—= k n+1

If n=0 then gamma(0)=gamma is known as Euler’s constant, which is
approximately 0,577 .
Psi(x) is digamma function, which is given by the logaritmic derivative of

the GAMMA function T'(x) =jt*‘1e‘tdt, that is Psi(x):‘P(x):%[r(x)]. Psi(n,x) is
0

nth polygamma function, which is the nth derivative of digamma function:

d()j(n [Psi(x)].

Psi(n,x)= ¥(n,x) =

' a

Let A=(a;),, be any matrix. The Hadamard inverse of A is A = (i)mn.
i

Let A=(a;),, be any complex matrix. The Euclidean norm of A is

ij /mn
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A~ E3h J

i=1 j=1

2 The Main Results

7n* +12n+5

Theorem 2.1. Let be matrix A:(ﬂ] .Then ||A|| =n
2 ) E 24

Proof. From the define of Euclidean norm,

||A|| Z”: (s+1) “z( ~ )(n+s+lj |

s=1

Where,
ZH:S s+1) _ (n+1)* L(0+D° (n+1?  (n+D)
=\ 2 16 24 16 24 '
z( B )[n+s+1] 11n* +5n3_11n2 5
- 48 24 48 24
2 2
E 24
Theorem 2.2. Let be matrix G :(\/ﬁ) Then ||G|._ :@.

Proof. Matrix G is of form:

NN N
fo..-m
G e ).

Hence, Euclidean norm of G,

61} = 25 + (25 ...+ (Josy’)

_2(s+25+ +ns) = Zs(1+2+ +n)

s=1 s=1

_(n(n Jrl)j2
==

Thus the proof is completed.
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Conjecture2.1. |G|, =|G|, where |G|, is denote spectral norm of matrix G.

Theorem 2.3. Let be matrix H :(AJ .Then

1+ ]

%(Gns 1150 +10n° — M[W(L N +2) — ¥ (1, 2n +1)]

[H|. =2 [+(n* +2n° +n*)[¥(n+2) - ¥(2n+1)] _
33n* +18n°*-29n’ —8n + 4
60

—i‘{’(n +2) +i\P(2n +1) -y
15 30 30

Proof. Euclidean norm of matrix H

A b IR o IS C= o

p=2s-1\ P p=n+2 s=1

The values of sums in (2.1):

041 p1( o) e (+2)* (n+2)° (n+2)2_‘1’(n+2)_i
ZZ(EJ(D ) =20 60 120 30 30

zzn i( :jz . —3)2 _ (6n° +15n* +10n° _n)g(l)f(l,Zn +1)-¥(@Ln+2)]

p=n+2 s=1

_(n*+2n°+n*)[¥(2n+1) - ¥(n+2)] . 4n* +8n°+5n° +n
2 6

And

3§ e[ nrp=s ©_(6n°+15n* +100° ~n)[¥(L2n +1) - ¥(Ln+ 2)]
n+p 30

p=2 s=

. (15n* +30n° +15n* ~1)[¥(2n +1) - ¥ (n + 2)] . -31n* +62n° +17n* +8n -4
30 120 '

If we write these values in (2.1), the proof is completed.

Example 2.1. The values of norms of matrices A,G and H is given in Table 2.1 :
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Table 2.1

LA | el | ],
1 1 1 1

2 3.08 3 2.92
3 6.24 6 5.79
4 10.45 10 9.61
5 15.81 15 14.39
10 58.63 55 52.54
20 | 225.28 210 200.37
30 | 499.94 465 443,53

The figure of Table 2.1 :

- Arithmetic

/ Geometric
/— Harmonic

Euclidean Norm Values
O FRP N WM UL O

Figure 2.1

From Table 2.1 and Figure 2.1 the inequality |A|_ > |G| > |H|. is validity.

Theorem 2.4. The Euclidean norm of Hadamard inverse of matrix A by Theorem

2.1.1is

o

Proof. From the define Euclidean norm,

o

where,

E=\/S‘If(n+2)+8(n+1)‘1’(1,n+2)—4‘1’(2n+1)—(8n+4)\I’(1,2n+1)+47/— 3

27°

2 n 2 2 pa 2 2
=>»s|—1| +>» (h-5 )
E ; [s+1) ;( )(n+s+1J
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n 2
Zs( J = 4¥(n+2)+4¥(L, n+2)+4y—2i
s+1 3

s=1

j =—@Bn+4)¥YL2n+1)-4¥Y(2n+1)+ Bn+4)¥Y(L,n+2)+4¥Y(n+2)

nZl(n s)(

o1 n+s+1

Thus the proof is completed.
Theorem 2.5. The Euclidean norm of Hadamard inverse of matrix G is

o

=H_,
E

where H_ is denote n th harmonic number(i.e. Hn:1+%+...+1 ).
n

Proof. Euclidean norm of matrix G°7l,

Conjecture2.2. HG‘“1 ]

G .
Theorem 2.6. The Euclidean norm of Hadamard inverse of matrix H is

-1
2

o1
X
2

_ 2 2
:\/ nY@n+1) N nz N (H,)
2 12 2
where H_ is denote n th harmonic number.

Proof.
Z” (s+1) Z" (s+2)2 Z” (s+nj2
~ =\ 4s &\ 2ns

1 (s+1)2 1 (s+2j2 1 (s+n]2
:—Z — +—Z — | =) | —
4\ s 163\ s an° Z\ s

the value of each sum in this equality,

-1
E

[,

n 2 2
Z(S—Hj = n—\P(l,n+1)+2\P(n+1)+%+ 27,
S

s=1
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2

i(%)z:n—4\11(1,n+1)+4\11(n+1)+2;Z 4y,
P
: ? 2_2
;(%) :n—nz‘P(l,n+1)+2n\P(n+1)+n T iony.
Then
2_2

1 S

Xy

+2sy]

[N—-s’¥(Ln+1)+2s¥P(n+1) +

-n¥(1,n+1) N nrz’ N [P(n+1)+ 7]
2 12 2

2 2
_ -n¥Y(1,n+1) ML (H,) .
2 12 2

Example 2.2. The values of norms of matrices A” ,G° and H° H is given in
Table 2.2. :

Table 2.2

"

e~

E
1 1 1 1
2 1.46 15 1.54
3 1.75 1.83 1.92
4

5

E

1.96 2.08 2.24
2.12 2.28 2.50

10 2.60 2.93 3.47
20 3.04 3.60 4.74
30 3.28 3.99 5.67

The figure of Table 2.2 :
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Figure 2.2
From Table 2.2. and Figure 2.2. the inequality HH“1 zHG’l ZHAOA is
E E E

validity.
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