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Abstract 
 
In this study, shape optimisation of cantilever beams has been carried out using neural 
network. Considering different geometrical parameters, finite element analyses of 
cantilever beams are carried out. Using these results, a back propagation neural network 
is trained.  Successfully trained networks are further used for shape optimisation of newer 
problems. Thus optimised beams are further validated with finite element analyses results 
and found to be in closer match. 
 
Keywords: Profile; Stress; Displacement; Finite element; Cantilever; Neural network 
 
 
INTRODUCTION 
 
The objective of shape optimization is to find the shape which is optimal in the sense that 
it minimizes a certain cost functional while satisfying given constraints. Analytical 
methods for solving shape optimization problems have been used for a long time. The 
first known attempt at developing a mathematical formulation for shape optimization 
dates back to Galileo in 1638, who found that minimum weight cantilever is a parabolic 
beam. Use of numerical methods for shape optimization became main interest of 
scientists in this field after the invention of computers, In last 40 years a lot of progresses 
have been made in this field. Most of the shape optimization problems solved so far can  
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be classified into gradientbased and gradientless methods. Both of these methods have 
their pros and cons and selection of a particular method depends upon the type and size of 
the problem, number of design variables and convergence required. 
Durelli (1981) et al. adopted a step-by-step procedure for modifying hole boundaries in a 
two  dimensional photoelastic model until the tensile and compressive boundary stresses 
were approximately constant. Mattheck (1990) based on the interesting observation that 
“living structures” appear to be able to add material in region of high stresses and to 
reduce material in region of low stresses to bring about an optimal shape that produces a 
constant von Mises stress distribution on the free surface. Hasengawa (1992) proposed 
two gradientless methods namely, boundary changing methods, in which co-ordinates are 
changed, and thickness changing methods, in which thickness is changed.  Pathak(2000) 
used design elements, fuzzy set theory and artificial neural networks in a gradientless 
method of shape optimisation. Hsu (1993) developed a new method for optimization 
called as ‘curvature function method’. They have solved various problems such as 
cantilever beam, fillet and torque arm. Ghoddosian(1998) have extended curvature 
function method to find optimum shape of shell structures. He has successfully solved 
one circular and one spherical shell problems. In recent years application of artificial 
intelligence based techniques have formed important place in structural engineering and 
shape optimization is not untouched to that. Most important among them is evolutionary 
method, application of genetic algorithms (GA), neural networks etc. Nicholas Ali (2003) 
reported shape optimization of very large planer and space problems using GA. The 
proposed clubbing of  FEA and GA  finds lighter and reasonable structural design. In this 
remeshing is avoided and particularly the computation burden and errors caused by 
sensitivity analysis are eliminated completely. From the literature survey it is observed 
that shape optimization is one of the most complex problem which requires 
multidisciplinary knowledge like Numerical Mathematics; Finite Element Method 
(FEM); Computer Aided Design(CAD) etc. Since most of the design engineers are not 
well versed in these areas, shape optimization is still beyond their reach. To overcome 
this difficulty, to some extent, application of neural network is proposed in this study. 
The stress and displacement obtained from finite element analyses are used for training of 
neural network. Successfully trained network is used for prediction of shapes. Several 
thus designed beams are compared with finite element analysis results and both are found 
to be in good match.  
 
 
ARTIFICIAL NEURAL NETWORK 
 
Artificial neural network attempts to imitate the learning activities of the brain. The 
human  brain  is  composed  of  approximately  1011 neurons (nerve  cells)  of  different  
types. In  a  typical  neuron, we  can  find  the  nucleus, where  the  connections with  
other  neurons  are  made  through  a  network  of  fibers  called  dendrites. Extending  out  
from  the  nucleus is  the  axon, which  transmits , by  means  of  a  complex  chemical  
process, electric  potentials  to  the  neurons  with  which  the  axon  is  connected  to  
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(Fig.1). When the signals  received by the neuron equal or surpass  their  threshold, it 
“triggers”,  sending  the  axon  an  electric  signal  of  constant  level  and  duration. In 
this way the message is transferred from one neuron to the other. 
In  an  artificial  neural  network (ANN), the  artificial  neuron  or  the  processing  unit  
may  have  several  input  paths  corresponding  to  the  dendrites. The units combine 
usually, by a  simple  summation, the  weighted  values  of  these  paths (Fig.2). The 
weighted value is  passed  to  the  neuron,  where  it  is  modified  by  threshold  function  
such  as  sigmoid  function (Fig.3). The modified value is directly  presented  to  the next  
neuron. In Fig.4 a 3-4-2 feed forward back propagation artificial neural network is 
shown. The connections between various neurons are strengthened or weakened 
according to the experiences obtained during the training. The  algorithm  for    training  
the  back propagation neural network  can  be  explained  in  the  following  steps- 
Step 1 – Select  the  number of  hidden  layers, number  of  iterations, tolerance  of  the  
mean  square  error and  initialize  the  weights  and  bias functions. 
Step 2 – Present  the normalized  input –output pattern  sets to the network. At  each  
node  of  the  network  except  the  nodes  on  input  layer, calculate  the  weighted  sum  
of  the  inputs, add  bias  and  apply  sigmoid  function  
Step 3- Calculate  total  mean error . If  error  is  less  than  permissible  limit,  the  
training  process  is  stopped. Otherwise, 
Step 4 –Change the weights and bias values based on generalized delta rule and repeat 
step 2.  
The mathematical formulations of training the network can be found in Ref.4. 
 
 
METHODOLOGY 
 
In Fig. 6, a cantilever beam of span L is shown. Let X, Y and Z be the width at fixed 
support, middle and free end respectively. P is the tip load on the cantilever beam. Due to 
design constraint, minimum free end width is restricted to Z min . The other dimensions 
can be normalized with respect to this as: 

k1  = X/Z min , k 2  = Y/ Z min , k 3  = Z/ Z min  
Various combinations of these geometrical parameters are framed and analysed using 
FEM. Results for these cases are recorded in terms of peak bending stress and 
displacement. These data are used for training of the neural network. Successfully trained 
network is employed for shape optimisation of newer problems. The flowchart of the 
methodology used for shape optimization using neural network is shown in Fig. 5 
 
 
APPLICATION OF NEURAL NETWORK 
 
In this study a cantilever beam of span 10000 mm is considered. Three value of X namely 
200, 250 and 300mm are accounted. Z min is considered as 50mm. Two values of Z viz. 75  
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mm and 50mm are accounted. In this way, two values of k 3  i.e. 1 and 1.5 are adopted. 
Considering these variations in geometrical parameters, 17 cases are framed (Table 1). 
Constant thickness of 150 mm is considered for all the cases. Beams are divided in 20, 
nine nodded elements making up 205 nodes (Fig 7.). An automatic mesh generator has 
been developed to generate finite element mesh for these cases. Young’s Modulus of 
2x10 5  MPa and Poisson’s ratio 0.3 is accounted. Considering these data, linear elastic 
finite element analyses of the 17 cases are carried out and maximum value of bending 
stresses and displacements are noted for each case (Table 1). The finite element analysis 
results are given in Table 1. Stresses and displacements, thus obtained, are used for 
training the neural network. For this a 3-5-2 size, back propagation neural network is 
adopted. The input parameters are k3, stress and displacement and output parameters are 
k1 and k2. It took 543268 epochs to converge to an error tolerance limit of 0.01. The 
trained network is used for predicting geometrical parameters for new testing patterns 
given in Table 2. To validate the results, obtained from the neural network, design 
variables ‘X’ and ‘Y’ are calculated from the projected k1  and k 2  and finite element 
analyses considering these data are carried out. The stress and displacement results 
obtained from FEA and corresponding percentage error are given in Table 3. Maximum 
error in stress and displacement predictions are 8.09% and 9.09% respectively. The 
comparative results obtained from neural network (NNT) and Finite Element Analyses 
(FEM) for stress and displacement are shown with the help of bar diagrams in Fig. 8 and 
Fig 9. This may be acceptable at first hand design. Based on the requirement, it may be 
further improved using more rigorous approaches. 
 
 
CONCLUSION 
 
In this study, an application of neural network is demonstrated on shape optimization 
problems. It overcomes some of the drawbacks of conventional approaches of shape 
optimisation, like high computational time and large memory requirement. It is observed 
that proposed approach works efficiently for optimizing shape accounting displacement 
and stress criteria. It offers a handy tool for design engineers who are not familiar with 
the theoretical and computational aspects of shape optimization. 
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S.No Input parameters Output 

parameters 
k 3  Stress 

(σ)  MPa
Displacement 

(δ) mm
k 1  k 2  

1. 1 67.05 26.5 6 5 
2. 1 66.54 43.0 6 4 
3. 1 66.03 85.9 6 3 
4. 1 65.53 266 6 2 
5. 1 96.15 48.9 5 4 
6. 1 95.83 91.8 5 3 
7. 1 95.55 252 5 2 
8. 1 149 107 4 3 
9. 1       150.62 263 4 2 
10. 1.5 66.99 25.6 6 5 
11. 1.5 66.48 40.7 6 4 
12. 1.5 65.97 48.1 6 3 
13. 1.5 96.10 48.9 5 4 
14. 1.5 95.79 86.2 5 3 
15. 1.5 95.52 222 5 2 
16. 1.5 150.05 103 4 3 
17. 1.5 150.70 244 4 2 

 
 
 
 
  
 

S.No. k 3  Stress (MPa) Displacement (mm) 
1. 1 135 110 
2. 1 130 90 
3. 1 125 80 
4. 1 120 70 
5. 1 115 80 
6. 1 105 70 
7. 1.5 140 90 
8. 1.5 135 100 
9. 1.5 115 70 

 
 

Table 1: Training Patterns 

Table 2: Testing Patterns 
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Sr.
No 

k 1  k 2  X 
(mm) 

Y 
(mm) 

Stress (MPa) Displacement (mm) 
NNT FEM % Error NNT FEM % Error 

1. 4.09 4.09 205 140 135 142.87 5.51 110 121 9.09 
2. 4.13 3.21 207 160 130 139.98 7.13 90 90.50 0.55 
3. 4.20 3.43 210 172 125 136 8.09 80 77.80 2.83 
4. 4.29 3.68 215 184 120 129.74 7.51 70 66.20 5.74 
5. 4.43 3.34 221 167 115 122.88 6.41 80 78.80 1.52 
6. 4.72 3.55 236 137 105 107.78 2.58 70 65.80 6.38 
7. 4.01 3.19 200 159 140 149 6.04 90 91.90 2.07 
8. 4.08 2.91 214 107 135 144 6.25 100 108 7.41 
9. 4.41 3.51 221 176 115 122.85 6.39 70 68.80 1.74 

Table 3: Validation 
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Fig.1. A typical biological neuron 

Fig.2. A single processing unit 

Fig.3. The sigmoid function 

Fig.4. Neural network 
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Fig. 5  Flowchart 
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Fig. 6: Cantilever Beam Fig.7 Finite Element Model

Fig. 8 Stress Comparison 

Fig. 9 Displacement Comparison 


