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1. Introduction

The theory of dynamic equations on time scales (aka measure chains) was

introduced by Hilger [5] with the motivation of providing a unified approach to

continuous and discrete analysis. The generalized derivative or Hilger deriva-

tive f� (t) of a function f : T −→ R, where T is a so-called ”time scale”(an

arbitrary closed non-empty subset of R) becomes the usual derivative when

T = R, that is f� (t) = f
′
(t) . On the other hand, if T = Z, then f� (t) re-

duces to the usual forward difference, that is f� (t) = �f (t) . This theory not

only brought equations leading to new applications. Also, this theory allows

one to get some insight into and better understanding of the subtle differences

between discrete and continuous systems [1, 3]. Some basic dynamic inequal-

ities are given as established in the paper by Agarwal, Bohner, and Peterson

[2].

In this paper we establish new integral inequality related to a certain in-

equality arising in the theory of dynamic equations on time scales.
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Here, first we mention several foundational definitions without proof and

results from the calculus on time scales in an excellent introductory text by

Bohner and Peterson [3, 4].

2. General Definitions

A time scale T is an arbitrary nonempty closed subset of the real numbers

R. We define the forward jump operator σ on T by

σ (t) = inf {s ∈ T : s > t} ∈ T for all t ∈ T.

In this definition we put σ (∅) = sup T. where ∅ is the empty set. if σ (t) > t,

then we say that t is right-scattered . If σ (t) = t and t < sup T, then we say

that t is right-dense. The backward jump operator and left-scattered and left-

dense point are defined in a similar way. The graininess μ : T −→ [0,∞) is

defined by μ (t) = σ (t) − t. The set T
k is derived from T as follows: If T has

a left-scattered maximum m, then T
k = T − {m} ; otherwise, T

k = T. For

f : T −→ R and t ∈ T
k, we define f� (t) to be the number (provided it exists)

such that given any ε > 0, there is neighborhood U of t with

∣∣fσ (t) − f (s) − f� (t) [σ (t) − s]
∣∣ ≤ ε |σ (t) − s| for all s ∈ U.

We call f� (t) the delta derivative of f at t, and f� is the usual derivative f
′
if

T = R and the usual forward difference �f (defined by �f = f (t + 1)−f (t))

if T = Z.

Theorem 1. Assume f, g : T −→ R and let t ∈ T
k. Then we have the follow-

ing:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable

at t with

f� (t) =
fσ (t) − f (t)

σ (t) − t
.

(iii) If f is differentiable at t and t is right-dense, then

f� (t) = lim
t→s

f (t) − f (s)

t− s
.

(iv) If f is differentiable at t, then

fσ (t) = f (t) + μ (t) f� (t) , where fσ := f ◦ σ.
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(v) If f and g are differentiable at t, then so is fg with

(fg)� (t) = f� (t) g (t) + fσ (t) g� (t) .

We say that f : T → R is rd-continuous provied f is continuous at each

right-dense point of T and has a finite left-sided limit at each left-dense point

of T. The set of rd-continuous functions will be denoted in this paper by

Crd, and the set of functions that are differentiable and whose derivative is rd-

continuous is denoted by C1
rd. A function F : T → R is called an antiderivative

of f : T → R provided F� (t) = f (t) holds for all T
k. In this case we define

the integral of f by

t∫
s

f (τ ) � τ = F (t) − F (s) , for s, t ∈ T.

We say that p : T → R is regressive provided 1+μ (t) p (t) 	= 0 for all t ∈ T, we

denote by R the set of all regressive and rd-continuous functions. We define the

set of all positively regressive functions by R+ = {p ∈ R : 1 + μ (t) p (t) > 0 for all t ∈ T} .
If p, q ∈ R, then we define

p⊕ q = p+ q + μpq, � q = − q

1 + μq
, and p� q = p⊕ (�q) .

If p : T → R is rd-continouos and regressivei then the exponential function

ep (., t0) is for each fixed t0 ∈ T the unique solution of the initial value problem

x� = p (t)x, x (t0) = 1 on T.

We use following four theorems which are proved in Bohner and Peterson [3].

Theorem 2. If p, q ∈ R, then

(i) ep (t, t) ≡ 1 and e0 (t, s) ≡ 1;

(ii) ep (σ (t) , s) = (1 + μ (t) p (t)) ep (t, s) ;

(iii) 1
ep(t,s)

= e�p (t, s) = ep (s, t) ;

(iv) ep(t,s)

ep(s,t)
= ep�q (t, s) ;

(v) ep (t, s) eq (t, s) = ep⊕q (t, s) ;

(vi) if p ∈ R+, then ep (t, t0) > 0 for all t ∈ T.

Remark 1. It is easy to see that, if T = R, the exponential function is given

by

ep (t, s) = e

t∫
s

p(τ)dτ

, eα (t, s) = eα(t−s), eα (t, 0) = eαt
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for s, t ∈ R, where α ∈ R is a constant and p : R → R is a continuous

function; if T = Z, the exponential function is given by

ep (t, s) =
t−1∏
r=s

[1 + p (τ )] , eα (t, s) = (1 + α)t−s , eα (t, 0) = (1 + α)t

for s, t ∈ Z with s < t, where α 	= −1 is a constant and p : Z → R is a

sequence satisfying p (t) 	= −1 for all t ∈ Z.

Theorem 3. If p ∈ R and a, b, c ∈ T, then

b∫
a

p (t) ep (c, σ (t))�t = ep (c, a) − ep (c, b) .

Theorem 4. If a, b, c ∈ T and f ∈ Crd such that f (t) ≥ 0 for all a ≤ t ≤ b,

then

b∫
a

f (t)�t ≥ 0

Theorem 5. Let t0 ∈ T
k and assume k : T × T → R is continuous at (t, t) ,

where t ∈ T
k with t > t0. Also assume that k (t, .) is rd-continuous on [t0, σ (t)] .

Suppose that for each ε > 0 there exists a neighborhood U of t, independent of

τ ∈ [t0, σ (t)] , such that

∣∣k (σ (t) , τ) − k (s, τ ) − k� (t, τ) [σ (t) − s]
∣∣ ≤ ε |σ (t) − s| for all s ∈ U.

where k� denotes the derivative of k with respect to the first variable. Then

g (t) :=

t∫
t0

k (t, τ)�τ implies g� (t) =

t∫
t0

k� (t, τ )�τ + k (σ (t) , t) .

The next four results are proved by Agarval, Bohner and Peterson [2]. For

convenience of notation we let throughout

t0 ∈ T,T0 = [t0,∞) ∩ T, and T
−
0 = (−∞, to] ∩ T

Also, for a function b ∈ Crd we write

b ≥ 0 if b (t) ≥ 0 for all t ∈ T.

Theorem 6. Theorem 7. (Comparison Theorem) . Suppose u, b ∈ Crd and

a ∈ R+. Then

u� (t) ≤ a (t) u (t) + b (t) for all t ∈ T0
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implies

u (t) = u (t0) ea (t, t0) +

t∫
t0

ea (t, σ (τ )) b (τ )�τ for all t ∈ T0.

Remark 2. Theorem 8. (Gronwall′s Inequality) . Suppose u, a, b ∈ Crd and

b ≥ 0. Then

u (t) ≤ a (t) +

t∫
t0

b (τ) u (τ )�τ for all t ∈ T0

implies

u (t) = a (t) +

t∫
t0

a (τ ) b (τ ) eb (t, σ (τ))�τ for all t ∈ T0.

3. Main Results

Theorem 9. Let u, a, b, g be real-valued nonnegative rd-continuous functions

defined on T0 and p > 1 be real constant.

(i) Let f : T0 × R+ → R+ be a rd-continuous function such that

0 ≤ f (t, x) − f (t, y) ≤ m (t, y) (x− y) ,(3.1)

for t ∈ T0 and x ≥ y ≥ 0, where m : T0 × R+ → R+ is a rd-continuous

function. If

up (t) ≤ a (t) + b (t)

t∫
t0

f (s, u (s))�s,(3.2)

for t ∈ T0, then

u (t) ≤
⎧⎨
⎩a (t) + b (t)

t∫
t0

f

(
s,
p− 1

p
+
a (s)

p

)

×e
m(t, p−1

p
+

a(t)
p ) b(t)

p

(t, σ (s))�s
} 1

p
,(3.3)

for t ∈ T0.

(ii) Let f : T0 ×R+ → R+ be a rd-continuous function and φ : R+ → R+ be

a rd-continuous and strictly increasing function with φ (0) = 0 such that

0 ≤ f (t, x) − f (t, y) ≤ m (t, y)φ−1 (x− y) ,(3.4)
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for t ∈ T0 and x ≥ y ≥ 0, where m : T0×R+ → R+ is a rd-continuous function

and φ−1 is inverse function of φ and

φ−1 (xy) ≤ φ−1 (x)φ−1 (y)(3.5)

for x, y ∈ R+. If

up (t) ≤ a (t) + b (t)φ

⎛
⎝

t∫
t0

f (s, u (s))�s
⎞
⎠ .(3.6)

for t ∈ T0, then

u (t) ≤
⎧⎨
⎩a (t) + b (t)φ

⎛
⎝

t∫
t0

f

(
s,
p− 1

p
+
a (s)

p

)⎞
⎠

×e
m(t, p−1

p
+

a(t)
p )φ−1( b(t)

p ) (t, σ (s))�s
} 1

p
.(3.7)

for t ∈ T0.

Proof. (i) Obviously, if t = t0, then the inequality 3.3 holds. Thus, in the next

proof, we always assume that t > t0, t ∈ T0.

Define a function z (t) by

z (t) =

t∫
t0

f (s, u (s))�s.(3.8)

Then z (t0) = 0 and (3.2) can be written as

up (t) ≤ a (t) + b (t) z (t)(3.9)

From (3.9) and using the elementary inequality (See [6,p,30])

u
1
p v

1
q ≤ u

p
+
v

q
,

where u ≥ 0, v ≥ 0, and 1
p

+ 1
q

= 1 with p > 1, we observe that

u (t) ≤ [α (t) + b (t) z (t)]
1
p(3.10)

≤ p− 1

p
+
a (t)

p
+
b (t)

p
z (t) .
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From (3.8),(3.10), and the condition (3.1) it follows that

z� (t) = f (t, u (t))(3.11)

≤ f

(
t,
p− 1

p
+
a (t)

p
+
b (t)

p
z (t)

)
− f

(
t,
p− 1

p
+
a (t)

p

)

+f

(
t,
p− 1

p
+
a (t)

p

)

≤ m

(
t,
p− 1

p
+
a (t)

p

)
b (t)

p
z (t) + f

(
t,
p− 1

p
+
a (t)

p

)
.

The inequality (3.11) implies the estimate

z (t) ≤
t∫
t0

e
m(t, p−1

p
+ a(t)

p ) b(t)
p

(t, σ (s)) f

(
s,
p− 1

p
+
a (s)

p

)
�s.(3.12)

From (3.12) and (3.9) the desired inequality in (3.3) follows.

(ii) Obviously, if t = t0, then the inequality (3.7) holds. Thus, in the next

proof, we always assume that t > t0, t ∈ T0.

Define a function z (t) by

z (t) =

t∫
t0

f (s, u (s))�s

Then z (t0) = 0 and (3.2) can be written as

up (t) ≤ a (t) + b (t)φ (z (t))(3.13)

and

u (t) ≤ p− 1

p
+
a (t)

p
+
b (t)

p
φ (z (t)) .(3.14)

From (3.8), (3.14) , and the condition (3.4) , (3.5) it follows that

z� (t) = f (t, u (t))(3.15)

≤ f

(
t,
p− 1

p
+
a (t)

p
+
b (t)

p
φ (z (t))

)
− f

(
t,
p− 1

p
+
a (t)

p

)

+f

(
t,
p− 1

p
+
a (t)

p

)

≤ m

(
t,
p− 1

p
+
a (t)

p

)
φ−1

(
b (t)

p
φ (z (t))

)
+ f

(
t,
p− 1

p
+
a (t)

p

)

≤ m

(
t,
p− 1

p
+
a (t)

p

)
φ−1

(
b (t)

p

)
z (t) + f

(
t,
p− 1

p
+
a (t)

p

)
.
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The inequality (3.15) implies the estimate

z (t) ≤
t∫
t0

e
m(t, p−1

p
+

a(t)
p )φ−1( b(t)

p ) (t, σ (s)) f

(
s,
p− 1

p
+
a (s)

p

)
�s,(3.16)

The required inequlity (3.7) follows from (3.13) and (3.16) .

For the cases T = R and T = Z, see [7,Theorem 2] and [7,Theorem 4],

respectively.

Corollary 1. Let T = R and assume that u, a, b, g be real-valued nonnegative

continuous functions defined on R+ and p > 1 be real constant.

(i) Let f : R+ × R+ → R+ be a continuous function such that

0 ≤ f (t, x) − f (t, y) ≤ m (t, y) (x− y) ,

for t ∈ R+ and x ≥ y ≥ 0, where m : R+×R+ → R+ is a continuous function.

If

up (t) ≤ a (t) + b (t)

t∫
0

f (s, u (s)) ds,

for t ∈ R+, then

u (t) ≤
⎧⎨
⎩a (t) + b (t)

t∫
0

f

(
s,
p− 1

p
+
a (s)

p

)

× exp

(
t∫
s

m

(
σ,
p− 1

p
+
a (σ)

p

)
b (σ)

p

)
ds

} 1
p

,

for t ∈ R+.

(ii) Let f : R+ × R+ → R+ be a continuous function and φ : R+ → R+ be a

continuous and strictly increasing function with φ (0) = 0 such that

0 ≤ f (t, x) − f (t, y) ≤ m (t, y)φ−1 (x− y) ,

for t ∈ R+ and x ≥ y ≥ 0, where m : R+ ×R+ → R+ is a continuous function

and φ−1 is the inverse function of φ and

φ−1 (xy) ≤ φ−1 (x)φ−1 (y)

for x, y ∈ R+. If

up (t) ≤ a (t) + b (t)φ

⎛
⎝

t∫
0

f (s, u (s)) ds

⎞
⎠ ,
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for t ∈ R+, then

u (t) ≤
⎧⎨
⎩a (t) + b (t)φ

⎛
⎝

t∫
t0

f

(
s,
p− 1

p
+
a (s)

p

)⎞
⎠

× exp

(
t∫
s

m

(
σ,
p− 1

p
+
a (σ)

p

)
φ−1

(
b (σ)

p

)
dσ

)
ds

} 1
p

.

for t ∈ R+.

Corollary 2. Let T = Z and assume that u, a, b, g be real-valued nonnegative

functions defined on N0 and p > 1 be real constant.

(i) Let L : N0 × R+ → R+ be a function such that

0 ≤ L (n, x) − L (n, y) ≤M (n, y) (x− y) ,

for n ∈ N0 and x ≥ y ≥ 0, where M (n, y) is a real-valued nonnegative function

defined for n ∈ N0, y ∈ R+. If

up (n) ≤ a (n) + b (n)
n−1∑
s=0

L (s, u (s)) ,

for n ∈ N0, then

u (n) ≤
{
a (n) + b (n)

n−1∑
s=0

L

(
s,
p− 1

p
+
a (s)

p

)

×
n−1∏

σ=s+1

[
1 +M

(
σ,
p− 1

p
+
a (σ)

p

)
b (σ)

p

]} 1
p

,

for n ∈ N0.

(ii) Let L : N0 × R+ → R+ be a function which satisfies the condition

0 ≤ L (n, x) − L (n, y) ≤M (n, y)ψ−1 (x− y) ,

for n ∈ N0, x ≥ y ≥ 0, where M (n, y) is as defined in (i) , ψ : R+ → R+ is a

continuous and strictly increasing function with ψ (0) = 0, ψ−1 is the inverse

function of ψ and

ψ−1 (xy) ≤ ψ−1 (x)ψ−1 (y)

for x, y ∈ R+. If

up (n) ≤ a (n) + b (n)ψ

(
n−1∑
s=0

L (s, u (s))

)
,
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for n ∈ N0, then

u (n) ≤
{
a (n) + b (n)ψ

(
n−1∑
s=0

L

(
s,
p− 1

p
+
a (s)

p

)

×
n−1∏

σ=s+1

[
1 +M

(
σ,
p− 1

p
+
a (σ)

p

)
ψ−1

(
b (σ)

p

)])} 1
p

.

for n ∈ N0.
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