On the Kernel of the Black-Scholes Equation in the Form of White Noise

A. Kananthai

Department of Mathematics Chiangmai University Chiangmai, 50200, Thailand malamnka@science.cmu.ac.th

Abstract

In this paper, we study the well known equation which is the Black-Scholes equation in the form of white noise. We found the kernel of such equation and obtained some interesting properties of such kernel.

Mathematics Subject Classification: 35K05, 60H40, 60J65

Keywords: Black-Scholes equation, white noise, kernel

1 Introduction

In financial mathematics, the famous equation named the Black-Scholes equation plays an important role in solving the option price of stocks. The Black-Scholes equation is given by

$$\frac{\partial u(s,t)}{\partial t} + rs \frac{\partial u(s,t)}{\partial s} + \frac{\sigma^2}{2} s^2 \frac{\partial^2 u(s,t)}{\partial s^2} - ru(s,t) = 0 \tag{1}$$

with the terminal condition

$$u(s,t) = (s-p)^+ \tag{2}$$

for $0 \le t \le T$ where u(s,t) is the option price at time t, r is the interest rate, s is the price of stock at time t, σ is the volatility of stock and p is the strike price.

In this work, we transformed the option price u(s,t) to $V(\xi,t)$ where ξ is the white noise and ξ can be obtained from the Geometric Brownian motion of the stock model

$$ds = \mu s dt + \sigma s dB$$

where μ is the drift, σ is the volatility and B is the Brownian motion. Thus (1) can be transformed to the equation

$$\frac{\partial V(\xi,t)}{\partial t} + \frac{1}{2t^2} \frac{\partial^2 V(\xi,t)}{\partial \xi^2} + \left(\frac{r}{t\sigma} - \frac{\sigma}{2t}\right) \frac{\partial V(\xi,t)}{\partial \xi} - rV(\xi,t) = 0.$$
 (3)

We study (3) for the case $0 \le t \le 1$ with the condition

$$V(\xi, 1) = f(\xi) \tag{4}$$

where $f(\xi)$ is the given generalized function. We can show that $\xi = \frac{dB}{dt}$ is a tempered distribution and $V(\xi, t)$ is also a tempered distribution see [1]. Thus we can apply the Fourier transform to (3) and (4), we obtain

$$V(\xi, t) = K(\xi, t) * f(\xi)$$
(5)

in the convolution form as a solution of (3) with satisfies the condition (4) and $K(\xi,t)$ is the kernel of the form

$$K(\xi,t) = \sqrt{\frac{t}{2\pi(1-t)}} e^{-(1-t)r} exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right]. \tag{6}$$

It can be shown that $\lim_{t\to 1} K(\xi,t) = \delta(\xi)$. Thus from (5)

$$V(\xi, 1) = \lim_{t \to 1} V(\xi, t) = \delta(\xi) * f(\xi) = f(\xi)$$

thus (4) holds.

2 Preliminary Notes

Recall the stock model

$$ds = \mu s dt + \sigma s dB \tag{7}$$

or

$$ds = \mu s dt + \sigma s \dot{B}(t) dt$$

where B is the Wiener process or the Brownian motion, $\dot{B}(t) = \frac{dB}{dt}$ is the white noise. From (7), by using the Itô's formula, we obtain

$$\int_0^t d(\ln s(\tau)) = \left(\mu - \frac{\sigma^2}{2}\right) \int_0^t d\tau + \sigma \int_0^t \dot{B}(\tau) d\tau \quad \text{where} \quad 0 \le \tau \le t.$$

Thus

$$\ln s(t) - \ln s_0 = \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma \int_0^t \dot{B}(\tau)d\tau \tag{8}$$

where $s(0) = s_0$.

Now consider $\int_0^t \dot{B}(\tau)d\tau$, we regard $\dot{B}(\tau)$ as a stochastic process with smooth sample path. By the mean value theorem, there exists some point τ^* for $0 < \tau^* < t$ such that

$$\int_{0}^{t} \dot{B}(\tau^{*}) d\tau = \dot{B}(\tau^{*}) \int_{0}^{t} d\tau = \dot{B}(\tau^{*}) t$$

where $\dot{B}(\tau^*)$ is the mean value of such integral and let $\xi(\tau^*)$ denote the mean value $\dot{B}(\tau^*)$. Actually $\xi(\tau^*)$ also the white noise. Thus from (7), $\ln\left(\frac{s}{s_0}\right) = \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma\xi t$ or

$$\xi = \frac{1}{t\sigma} \ln\left(\frac{s}{s_0}\right) - \frac{\mu}{\sigma} + \frac{\sigma}{2} \tag{9}$$

Let us discuss briefly some properties of ξ . It has been shown that ξ is a tempered distribution, that is $\forall \xi \in \mathcal{S}'(\mathbb{R})$ —the space of tempered distribution and for any testing function $\varphi \in \mathcal{S}(\mathbb{R})$ —the Schwartz space, define $\langle \xi, \varphi \rangle$ on $\mathcal{S}'(\mathbb{R})$, we can apply the Minlos Theorem to obtain a probability measure μ on its dual space $\mathcal{S}'(\mathbb{R})$ such that

$$\int_{\mathcal{S}'(\mathbb{R})} e^{ix\varphi} d\mu(x) = e^{-\frac{1}{2}|\varphi|_0^2}, \quad \forall \varphi \in \mathcal{S}(\mathbb{R})$$

where $|\varphi|_0^2 = \int_{\mathbb{R}} |\varphi|^2 dx$ see [1]. Moreover $\langle \xi, \varphi \rangle$ has the Gaussain distribution with mean 0 and variance $|\varphi|_0^2$.

Now we show how to construct equation (3). From (9)

$$\frac{\partial \xi}{\partial s} = \frac{1}{t\sigma} \cdot \frac{s_0}{s} \cdot \frac{1}{s_0} = \frac{1}{t\sigma s},$$

thus

$$\frac{\partial u(s,t)}{\partial s} = \frac{\partial V(\xi,t)}{\partial s} = \frac{\partial V(\xi,t)}{\partial \xi} \cdot \frac{\partial \xi}{\partial s} = \frac{1}{t\sigma s} \frac{\partial V(\xi,t)}{\partial \xi},$$

and

$$\begin{split} \frac{\partial^2 u(s,t)}{\partial s^2} &= \frac{\partial^2 V(\xi,t)}{\partial s^2} = \frac{\partial}{\partial \xi} \left(\frac{1}{t\sigma s} \frac{\partial V(\xi,t)}{\partial \xi} \right) \cdot \frac{\partial \xi}{\partial s} \\ &= \left(\frac{1}{t\sigma s} \frac{\partial^2 V(\xi,t)}{\partial \xi^2} + \frac{1}{t\sigma} \frac{\partial V(\xi,t)}{\partial \xi} \left(-\frac{1}{s^2} \right) \frac{\partial s}{\partial \xi} \right) \frac{\partial \xi}{\partial s} \\ &= \frac{1}{t^2 \sigma^2 s^2} \frac{\partial^2 V(\xi,t)}{\partial \xi^2} - \frac{1}{t\sigma s^2} \frac{\partial V(\xi,t)}{\partial \xi} \end{split}$$

substitute into (1) we obtain (3).

Definition 2.1. Let f(x) is a locally integrable function. The Fourier transform $\widehat{f}(\omega)$ of f(x) is defined by

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} f(x) dx \tag{10}$$

and the inverse Fourier transform of $\widehat{f}(\omega)$ also defined by

$$f(x) = \mathcal{F}^{-1}\widehat{f}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \widehat{f}(\omega) d\omega$$
 (11)

3 Main Results

Theorem 3.1. Given the white noise form of the Black-Scholes equation

$$\frac{\partial V(\xi,t)}{\partial t} + \frac{1}{2t^2} \frac{\partial^2 V(\xi,t)}{\partial \xi^2} + \left(\frac{r}{t\sigma} - \frac{\sigma}{2t}\right) \frac{\partial V(\xi,t)}{\partial \xi} - rV(\xi,t) = 0 \qquad (12)$$

for $0 \le t \le 1$ and ξ is the white noise given by (9) with the condition

$$V(\xi, 1) = f(\xi) \tag{13}$$

where $f(\xi)$ is the given generalized function. Then we obtain

$$V(\xi, t) = K(\xi, t) * f(\xi)$$
(14)

as the solution of (12) where

$$K(\xi,t) = \sqrt{\frac{t}{2\pi(1-t)}} e^{-(1-t)r} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right]. \tag{15}$$

is the kernel of (12).

Proof. Take the Fourier transform defined by (10) to both sides of (12) and obtain

$$\frac{\partial \widehat{V}(\omega, t)}{\partial t} - \frac{\omega^2}{2t^2} \widehat{V}(\omega, t) + \frac{1}{t} \left(\frac{r}{\sigma} - \frac{\sigma}{2} \right) i\omega \widehat{V}(\omega, t) - r\widehat{V}(\omega, t) = 0.$$

Thus

$$\widehat{V}(\omega,t) = C(\omega)e^{rt}e^{-\frac{\omega^2}{2t}-i\omega\left(\frac{r}{\sigma}-\frac{\sigma}{2}\right)\ln t}.$$

Now, from (13),

$$\widehat{V}(\omega, 1) = \widehat{f}(\omega).$$

Thus

$$C(\omega) = e^{-r + \frac{\omega^2}{2}} \widehat{f}(\omega),$$

and we obtain

$$\widehat{V}(\omega, t) = e^{-(1-t)r} \exp\left(\frac{-(1-t)}{2t}\omega^2 - i\omega\left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right) \widehat{f}(\omega),$$

for $0 < t \le 1$. Now

$$|\widehat{V}(\omega,t)| \le |e^{-(1-t)r}| |e^{\frac{-(1-t)}{2t}\omega^2}| |\widehat{f}(\omega)|.$$

Let $M = \max | \widehat{f}(\omega) |$, thus

$$|\widehat{V}(\omega, t)| \le |e^{-(1-t)r}| |e^{\frac{-(1-t)}{2t}\omega^2}| M \le K.$$

where K is a constant. It follows that $\widehat{V}(\omega, t)$ is bounded for any fixed t with $0 < t \le 1$. Moreover $\widehat{V}(\omega, t)$ is a tempered distribution. Now, from (11),

$$\begin{split} V(\xi,t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega\xi} \widehat{V}(\omega,t) d\omega \\ &= \frac{1}{2\pi} e^{-(1-t)r} \int_{-\infty}^{\infty} \exp\left[\frac{-(1-t)}{2t} \omega^2 - i\omega\left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t + i\omega\xi\right] \widehat{f}(\omega) d\omega \\ &= \frac{1}{2\pi} e^{-(1-t)r} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[\frac{-(1-t)}{2t} \left(\omega^2 - \frac{2\omega ti\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)}{1-t}\right)\right] f(y) dy d\omega \\ &= \frac{1}{2\pi} e^{-(1-t)r} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)^2}{2(1-t)}\right] \times \\ &= \exp\left[\frac{-(1-t)}{2t} \left(\omega - \frac{it\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)^2}{1-t}\right)\right] f(y) dy d\omega \\ &= \frac{1}{2\pi} e^{-(1-t)r} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)^2}{2(1-t)}\right] \times \\ &\int_{-\infty}^{\infty} \exp\left[\frac{-(1-t)}{2t} \left(\omega - \frac{it\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)^2}{1-t}\right)\right] d\omega f(y) dy. \end{split}$$

$$\text{Let } u = \sqrt{\frac{(1-t)}{2t}} \left(\omega - \frac{it(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right) \ln t\right)}{1-t}\right), \text{ then } du = \sqrt{\frac{1-t}{2t}} d\omega \text{ and we have} \end{split}$$

$$d\omega = \sqrt{\frac{2t}{1-t}}du$$
. Thus

$$V(\xi,t) = \frac{1}{2\pi} e^{-(1-t)r} \sqrt{\frac{2t}{1-t}} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^{2}}{2(1-t)}\right]$$

$$\left(\int_{-\infty}^{\infty} e^{-u^{2}} du\right) f(y) dy$$

$$= \frac{\sqrt{\pi}}{2\pi} \sqrt{\frac{2t}{1-t}} e^{-(1-t)r} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^{2}}{2(1-t)}\right] f(y) dy$$

$$= \sqrt{\frac{t}{2\pi(1-t)}} e^{-(1-t)r} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^{2}}{2(1-t)}\right] f(y) dy.$$

Let

$$K(\xi, t) = \sqrt{\frac{t}{2\pi(1-t)}} e^{-(1-t)r} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right] \quad \text{for } 0 < t \le 1.$$

Then $V(\xi, t) = K(\xi, t) * f(\xi)$ for $0 < t \le 1$. Thus we obtain (15). $K(\xi, t)$ is called the kernel of (12).

Theorem 3.2. (The properties of $K(\xi, t)$).

The kernel $K(\xi,t)$ define by (15) has the following properties

- (i) $K(\xi, t)$ satisfies equation (12).
- (ii) $K(\xi,t)$ is a tempered distribution, that is $K(\xi,t) \in \mathcal{S}'(\mathbb{R})$.
- (iii) $K(\xi, t) > 0 \text{ for } 0 < t \le 1.$
- (iv) $e^{(1-t)r} \int_{-\infty}^{\infty} K(\xi, t) d\xi = 1$.
- (v) $\lim_{t\to 1} K(\xi,t) = \delta(\xi)$ where $\delta(\xi)$ is the Dirac-delta distribution.
- (vi) $K(\xi,t)$ is a Gaussian (or normal) distribution with mean $e^{-(1-t)r} \left(\frac{r}{\sigma} \frac{\sigma}{2}\right) \ln t$, variance $e^{-2(1-t)r} \frac{(1-t)}{t}$.

Proof. (i) By computing directly, $K(\xi, t)$ satisfies (12).

(ii) Since $K(\xi, t)$ is a Gaussian function and $K(\xi, t) \in \mathcal{L}(\mathbb{R})$ where $\mathcal{L}(\mathbb{R})$ is the space of integrable function on the real \mathbb{R} . It follows that $K(\xi, t)$ is a tempered distribution.

(iii) $K(\xi, t) > 0$ for $0 < t \le 1$ is obvious.

(iv)

$$\begin{split} e^{(1-t)r} \int_{-\infty}^{\infty} K(\xi, t) d\xi \\ &= e^{(1-t)r} \int_{-\infty}^{\infty} \sqrt{\frac{t}{2\pi(1-t)}} e^{-(1-t)r} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right] \\ &= \sqrt{\frac{t}{2\pi(1-t)}} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right] d\xi. \end{split}$$

Let
$$u = \frac{\sqrt{t}\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)}{\sqrt{2(1-t)}}$$
, then $d\xi = \sqrt{\frac{2(1-t)}{t}}du$. Thus

$$\begin{split} e^{(1-t)r} \int_{-\infty}^{\infty} K(\xi, t) d\xi &= \sqrt{\frac{t}{2\pi(1-t)}} \int_{-\infty}^{\infty} e^{-u^2} \sqrt{\frac{2(1-t)}{t}} du \\ &= \sqrt{\frac{t}{2\pi(1-t)}} \sqrt{\frac{2(1-t)}{t}} \sqrt{\pi} \\ &= 1. \end{split}$$

Thus $e^{(1-t)r} \int_{-\infty}^{\infty} K(\xi, t) d\xi = 1.$ (v)

$$\lim_{t \to 1} K(\xi, t) = \lim_{t \to 1} e^{-(1-t)r} \lim_{t \to 1} \sqrt{\frac{t}{2\pi(1-t)}} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right]$$

$$= \lim_{t \to 1} \sqrt{\frac{t}{2\pi(1-t)}} \exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right]$$

$$= \delta(\xi) \qquad \text{see [2,pp 36-37]}.$$

(vi) Now, the mean

$$E(K(\xi,t)) = E\left(e^{-(1-t)r}\sqrt{\frac{t}{2\pi(1-t)}}\exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^{2}}{2(1-t)}\right]\right)$$

$$= e^{-(1-t)r}E\left(\sqrt{\frac{t}{2\pi(1-t)}}\exp\left[\frac{-\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^{2}}{\frac{2(1-t)}{t}}\right]\right)$$

$$= e^{-(1-t)r}\left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t.$$

Since the function in the is a Gaussian or normal distribution. Thus $E\left(K(\xi,t)\right)$ is the mean $e^{-(1-t)r}\left(\frac{r}{\sigma}-\frac{\sigma}{2}\right)\ln t$.

The variance

$$V(K(\xi,t)) = V\left(e^{-(1-t)r}\sqrt{\frac{t}{2\pi(1-t)}}\exp\left[\frac{-t\left(\xi - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right]\right)$$
$$= e^{-2(1-t)r}\left(\frac{1-t}{t}\right) \quad \text{for } 0 < t \le 1.$$

Note: The solution $V(\xi, t)$ of (12) of the Theorem (3.1) is called the option price in the white noise form where the white noise ξ can be computed from (8) when the price s of the stock is Known. The solution $V(\xi, t)$ can be written by

$$V(\xi, t) = K(\xi, t) * f(\xi)$$

or for 0 < t < 1,

$$V(\xi,t) = e^{-(1-t)r} \sqrt{\frac{t}{2\pi(1-t)}} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right] f(y)dy,$$
$$e^{(1-t)r} V(\xi,t) = \sqrt{\frac{t}{2\pi(1-t)}} \int_{-\infty}^{\infty} \exp\left[\frac{-t\left(\xi - y - \left(\frac{r}{\sigma} - \frac{\sigma}{2}\right)\ln t\right)^2}{2(1-t)}\right] f(y)dy.$$

The left hand side of the above equation is the value of the option price of the riskless interest rate r (constant) at the time 1 - t ($0 \le t \le 1$) which equals the convolution form on the right hand side.

Acknowledgement

The author would like to thank the Centre of Excellence in Mathematics, a national centre under the Postgraduate Education and Research Development Office (PERDO), Commission on Higher Education of the Ministry of Education for financial support.

References

- [1] H. H Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, 1996.
- [2] I. M. Gel'fand, G. E Shilov, *Generalized Function*, Vol 1, Academic Press, 1972.

Received: November, 2009