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Abstract

Data envelopment analysis (DEA) is a method to estimate the relative
efficiency of decision-making units ( DMUs) performing similar tasks in a
production system that consumes multiple inputs to produce multiple outputs.
Sensitivity analysis of specific DMU, which is under evaluation, is one of the
topics of interests in data envelopment analysis. In traditional DEA, it is
assumed that all inputs and outputs are exactly known . in real world, exact
data may not be available. In this paper, we develop a sensitivity analysis
approach for the additive model. Inputs and outputs are symmetric triangular
fuzzy numbers. Variations in the data are considered for the margins of the
fuzzy numbers of inputs and outputs of a specific efficient DMU and the data
for the remaining DMUs are assumed fixed.
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1 Introduction

During the recent years, the issue of sensitivity and stability of data envelopment

analysis results has been extensively studied. The first DEA sensitivity analysis

paper by Charnes et al. [3] examined change in a single output. This is followed by

a series of sensitivity analysis articles by Charnes and Neralic [5] in which sufficient

conditions for simultaneous change of all outputs and all inputs of an efficient DMU

which preserves efficiency were established. Seiford and Zhu [10] proposed a sen-

sitivity analysis method that inputs or outputs could change individually, so they

obtained the largest stability region.
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Traditional DEA models such as CCR, BCC [1,4] and additive models require

exact data, but in more general cases, the data for evaluation are often collected

from investigation to decide the natural languages such as good, medium and bad

rather than a specific case. That is, the inputs and outputs are fuzzy. Based on

fuzzy set theory, we can find several fuzzy approaches to the assessment of efficiency

, ranking or sensitivity analysis in the DEA literature. Sengupta [11] analyzed the

resulting fuzzy DEA model by using Zimmermann’s method. Guo and Tanaka [7]

and Leon et al. [9] employed the fuzzy ranking approach.

The main purpose of this paper is to study sensitivity analysis of the additive

model in fuzzy environment. It is assumed that inputs and outputs are symmetric

triangular fuzzy numbers. We restrict our attention to the case where the increase of

inputs and the decrease of outputs for the efficient DMUP , which is under evaluation

are performed simultaneously. We wish to determine a region in which DMUP

remains efficient. In order to increase inputs, we decrease the margins of symmetric

triangular fuzzy numbers of inputs. We decrease outputs by increasing the margins

of symmetric triangular fuzzy numbers of outputs.

This paper is organized as follows: In section 2 we note symmetric triangular

fuzzy numbers, and develop the additive model with symmetric triangular fuzzy

numbers. Section 3 presents a sensitivity analysis method. The intent of section 4

is to provide a numerical example. The paper is concluded in section 5.

2 Preliminaries

We represent an arbitrary fuzzy number by an ordered pair of functions ũ =:

(u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the following requirements:

• u(r) is a bounded left continuous nondecreasing function over [0,1].

• u(r) is a bounded left continuous nonincreasing function over [0,1].

• u(r) and u(r) are right continuous at 0

• u(r) ≤ u(r) ,0 ≤ r ≤ 1.

Definition 1. Mũ = Core(ũ) = u(1) = u(1); and Lũ = Mũ − u(0) ≥ 0 and

Uũ = u(0) − Mũ ≥ 0 are the left and right margins of ũ = (Mũ, Lũ, Uũ).

Definition 2. The fuzzy number t̃ =: (Mt̃−Lt̃+Lt̃r, Mt̃+Ut̃−Ut̃r) =: (Mt̃, Lt̃, Ut̃),

0 ≤ r ≤ 1 is an Asymmetric Triangular Fuzzy number. As a matter of fact Mt̃ −
Lt̃ + Lt̃r = t(r) and Mt̃ + Ut̃ − Ut̃r = t(r) where Mt̃, Lt̃, Ut̃ ∈ �.
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A conventional fuzzy number is the symmetric triangular fuzzy number S[c, σ]

where LS = US = σ centered at c with basis 2σ.Its parametric form is S[c, σ] =:

(c−σ +r(σ), c+σ−r(σ)) := (c; σ) , 0 ≤ r ≤ 1 which c, σ ∈ �, c is the center and

σ ≥ 0 is the margin of S[c, σ] and it is called symmetric triangular fuzzy number.

Definition 3. Let t̃ = (Mt̃, Lt̃, Ut̃), ũ = (Mũ, Lũ, Uũ) are non-symmetric triangular

fuzzy numbers and k ∈ �, by using extension principal we can define:

1. t̃ = ũ if and only if Mt̃ = Mũ; and Lt̃ = Lũ and Ut̃ = Uũ.

2. t̃ + ũ = (Mt̃ + Mũ, Lt̃ + Lũ, Ut̃ + Uũ).

3.

kt̃ =

{
(kMt̃, kLt̃, kUt̃), k ≥ 0

(kMt̃,−kLt̃,−kUt̃), k < 0
(1)

Definition 4. For two fuzzy numbers in parametric forms t̃ = (t(r), t(r)) , ũ =

(u(r), u(r)) we have t̃ũ = h̃ = (h(r), h(r)) where

h(r) = Min{t(r)u(r), t(r)u(r), t(r)u(r), t(r)u(r)} , and

h(r)) = Max{t(r)u(r), t(r)u(r), t(r)u(r), t(r)u(r)}

Definition 5. (Ordering symmetric triangular fuzzy numbers) Let t̃ = (ct̃; σt̃) and

ũ = (cũ; σũ) are two symmetric triangular fuzzy numbers. We can define their

ordering as follows:

We say t̃ <∗ ũ if and only if (ct̃ < cũ) ∨ (ct̃ = cũ ∧ σt̃ > σũ)

In case of equality we have t̃ =∗ ũ if and only if ((ct̃ = cũ) ∧ (σt̃ = σũ)).

And t̃ ≤∗ ũ if and only if (t̃ <∗ ũ ∨ t̃ =∗ ũ) it means that :

[(ct̃ < cũ) ∨ (ct̃ = cũ ∧ σt̃ > σũ)] ∨ [(ct̃ = cũ ∧ σt̃ = σũ)],

Now, suppose that there are n decision making units, with s outputs and m

inputs. Ỹj , X̃j are the observed vectors of outputs and inputs of DMUj , respectively,

j=1,...,n. It is assumed that, The observed values are positive symmetric triangular
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fuzzy numbers. Fuzzy additive model is as follows:

Max
m∑

i=1

s−i +
s∑

r=1

s+
r

s.t.
n∑

j=1

λj ỹrj − s+
r =∗ ỹrp r = 1, ..., s

n∑
j=1

λjx̃ij + s−i =∗ x̃ip i = 1, ..., m

n∑
j=1

λj = 1

s−i ≥ 0 i = 1, ..., m

s+
r ≥ 0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(2)

We attribute ϕ(ã) = c
�a−δσ

�a to the symmetric triangular fuzzy number ã = S[c
�a, σ�a],

in which δ is a small, positive and real number by using ϕ the following model is

obtained:

Max
m∑

i=1

s−i +
s∑

r=1

s+
r

s.t.
n∑

j=1

λjϕ(ỹrj) − s+
r = ϕ(ỹrp) r = 1, ..., s

n∑
j=1

λjϕ(x̃ij) + s−i = ϕ(x̃ip) i = 1, ..., m

n∑
j=1

λj = 1

s−i ≥ 0 i = 1, ..., m

s+
r ≥ 0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(3)

Theorem 1. DMUp with symmetric triangular fuzzy inputs and outputs is Pareto-

Koopmans efficient if and only if in linear programming problem (??)

m∑
i=1

s−∗
i +

s∑
r=1

s+∗
r = 0.

Proof. Firt, suppose that in linear programming problem (??)
m∑

i=1

s−∗
i +

s∑
r=1

s+∗
r �= 0

.
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Assume that (λ∗, S−∗, S+∗) is the optimal solution of (??). We know that
m∑

i=1

s−∗
i +

s∑
r=1

s+∗
r > 0 , so

∃ i : s−∗
i > 0 or ∃ r : s+∗

r > 0.

We can suppose that s−∗
1 > 0. projection of a point on the boundary is as follows:[

ϕ(x̃ip) − s−∗
i i = 1, ..., m

ϕ(ỹrp) + s+∗
r r = 1, ..., s

]
so a production possibility is found whose first component of its input vector

is less than the first component of DMUp’s input vector. Therefore, DMUp is not

Pareto-Koopmans efficient.

Now assume that DMUp is not Pareto-Koopmans efficient, so

∃ λ
j
≥ 0 j = 1, ..., n ,

n∑
j=1

λ
j
= 1 ,⎡⎢⎢⎢⎢⎣

−
n∑

j=1

λ
j
ϕ(x̃ip) i = 1, ..., m

n∑
j=1

λ
j
ϕ(ỹrp) r = 1, ..., s

⎤⎥⎥⎥⎥⎦ �

[ −ϕ(x̃ip)

ϕ(ỹrp)

]

At least one of the inequalities is strict. For example i=1.
n∑

j=1

λjϕ(x̃1j) + s−1 = ϕ(x̃1p) s1 > 0

n∑
j=1

λjϕ(x̃ij) + s−i = ϕ(x̃ip) i = 2, ..., m

n∑
j=1

λjϕ(ỹrj) − s+
r = ϕ(ỹrp) r = 1, ..., s

n∑
j=1

λ
j
= 1

So (λ, S−, S+) is a feasible solution whose value of objective function is positive.

Therefore, the optimal value of objective function is positive.

We want to know that how much can we change inputs and outputs of an efficient

DMUP so that it preserves its efficiency. It is clear that by decreasing inputs and

increasing outputs of DMUp, it remains efficient, so downward variations of outputs

and upward variations of inputs must be considered. If the core of a symmetric

triangular fuzzy number is constant, decrease of margin of a symmetric triangular
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fuzzy number cause increase of the fuzzy number, so we exert the following changes

on the margins of inputs and outputs of DMUP :

c(̂̃xip) = c(x̃ip) , σ(̂̃xip) = σ(x̃ip)−βi ≥ 0 , βi ≥ 0 i = 1, ..., m

c(̂̃yrp) = c(ỹrp) , σ(̂̃yrp) = σ(ỹrp)+αr , αr ≥ 0 , ̂̃yrp >∗ 0 r =

1, ..., s

3 Sensitivity analysis in fuzzy environment

Let aj j = 1, ..., m + s + n be the columns of the matrix and let aP be the right

hand side vector for linear programming problem(??). Let (λ∗, S+∗, S−∗) be the

basic optimal solution of Pareto-Koopmans efficient DMUp with the optimal basis

matrix

B =

⎡⎣ ϕ(ỸB) −I+
B 0

ϕ(X̃B) 0 I+
B

eT 0 0

⎤⎦

B = [bij ]i,j i, j = 1, ..., m + s + 1 ⇒ B−1 = [b−1
ij ] i, j = 1, ..., m + s + 1

would be the inverse of matrix B. We will use the following notations:

yj = B−1aj j = 0, 1, 2, ..., m + s + n , wT = CT
BB−1 ,

zj = CT
BB−1aj = wTaj j = 0, 1, 2, ..., m + s + n

Simultaneous change of the margins of outputs and inputs means the following

perturbation of the optimal basis matrix B:

B̂ = B + D (4)
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D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ... 0 −δα1 0 ... 0

. . . . .

. . . . .

. . . . .

0 ... 0 −δαs 0 ... 0

0 ... 0 δβ1 0 ... 0

. . . . .

. . . . .

. . . . .

0 ... 0 δβm 0 ... 0

0 ... 0 0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Where the distinct column corresponds to the optimal basic variable. Right hand

side vector also changes as follows:

âP = aP + [−δα1 ... − δαs δβ1 ... + δβm 0]T (5)

It can be easily showed that if p = −
s∑

t=1

b−1
kt (δαt) +

m∑
t=1

b−1
k,s+t(δβt) , for matrices

B−1 and D the following holds:

B−1DB−1D = pB−1D (6)

Because of (??) we can use the following theorem of Charnes and Cooper, which

is proved in a more general form in [2].

Theorem 2. Let B be a k × k matrix with inverse B−1. Let D be a k × k matrix

such that B−1DB−1D = pB−1D for some real scalar p. If σ is any scalar such that

pσ �= −1, then

(B + σD)−1 = B−1(I + τDB−1) = (I + τB−1D)B−1, where τ = −σ(1 + pσ)−1.

If σ = 1 , p �= −1 and τ = −1
(1+p)

, then we have

(B̂)−1 = (B + D)−1 = B−1(I + τDB−1) = (I + τB−1D)B−1, (7)

Theorem 3. Conditions

−τwT Dyj � zj − cj, j ∈ N.B (8)

are sufficient for Pareto-Koopmans efficient DMUp with fuzzy input and output

data to preserve efficiency after changes.
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Proof. We know that optimality conditions of the perturbed basis are

∀j ŵT aj − cj � 0 (9)

primal feasibility condition for the basic variables is

ŷP = (B̂)−1âP � 0. (10)

We can write ẑj as

ẑj = cT
BB−1aj + τcT

BB−1DB−1aj = wTaj + τwT Dyj = zj + τwT Dyj. (11)

We know that ẑj − cj = zj − cj = 0 for j an index of basic variables, so we

have.

zj + τwT Dyj − cj � 0, j ∈ N.B (12)

In which N.B is the set of non-basic variables. It is clear that conditions (??) and

(??) are the same. Now We want to show primal feasibility of basic variables and

efficiency in order to complete the proof.

ŷP = (I + τB−1D)B−1(aP + [−δα1 ... − δαs δβ1 ... δβm 0]T ) =

(I + τB−1D)(yP + (B−1D)k) = Cg,
(13)

with

C = (I + τB−1D) (14)

g = yP + (B−1D)k (15)

where (B−1D)k is column k of B−1D. Matrix C has the following structure:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ... 0 c1k 0 ... 0

0 1 ... 0 c2k 0 ... 0

. . . . . .

. . . . . .

. . . . . .

0 0 ... 0 1 + ckk 0 ... 0

. . . . . .

. . . . . .

. . . . . .

0 0 ... 0 cs+m+1,k 0 ... 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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cjk = τ(B−1D)jk = −τ

s∑
t=1

b−1
jt (δαt) + τ

m∑
t=1

b−1
j,s+t(δβt) j = 1, 2, ..., m + s + 1

(16)

gj = yj,P + (B−1D)jk = yj,P −
s∑

t=1

b−1
jt (δαt) +

m∑
t=1

b−1
j,s+t(δβt) j = 1, 2, ..., m + s + 1

(17)

DMUP is efficient ⇒ yk,p = λ∗
p = 1 ⇒ gk = yk,p−

s∑
t=1

b−1
kt (δαt)+

m∑
t=1

b−1
k,s+t(δβt) =

1 + p , so

ŷj,p = gj + cjkgk = yj,p −
s∑

t=1

b−1
jt (δαt) +

m∑
t=1

b−1
j,s+t(δβt)+

1
1+p

(

s∑
t=1

b−1
jt (δαt) −

m∑
t=1

b−1
j,s+t(δβt))(1 + p) = yj,p � 0 j = 1, 2, ..., m + s + 1

(18)

so the primal feasibility of basic variables is proved. Moreover, it is clear that the

basic variables have not been changed and we have ẑo = zo = 0. It is concluded that

the efficiency of DMUo has been preserved, which completes the proof

If 1 + p > 0 The system of inequalities can be written as

s∑
t=1

(b−1
kt (zj − cj) − wtykj)(δαt) −

m∑
t=1

(b−1
k,s+t(zj − cj) − ws+tykj)(δβt) � zj − cj, j ∈ NB

(19)

4 Numerical Example

The following example with five DMUs, one output and two outputs will be con-

sidered.

Table. 1

DMU1 DMU2 DMU3 DMU4 DMU5

ŷ1j S[2, 1
4 ] S[4, 1

2 ] S[2, 1
4 ] S[3, 1

4 ] S[2, 1
4 ]

x̂1j S[4, 1
4 ] S[12, 1] S[8, 1] S[6, 1

2 ] S[2, 1
4 ]

x̂2j S[6, 1
2 ] S[8, 1] S[2, 1

4 ] S[6, 1
2 ] S[8, 1]
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In order to see if DMU4 is efficient or not the following should be solved:

Maxs−1 + s−2 + s+
1

s.t. (2 − 1
4
δ)λ1 + (4 − 1

2
δ)λ2 + (2 − 1

4
δ)λ3 + (3 − 1

4
δ)λ4 + (2 − 1

4
δ)λ5 − s+

1 = 3 − 1
4
δ

(4 − 1
4
δ)λ1 + (12 − δ)λ2 + (8 − δ)λ3 + (6 − 1

2
δ)λ4 + (2 − 1

4
δ)λ5 + s−1 = 6 − 1

2
δ

(6 − 1
2
δ)λ1 + (8 − δ)λ2 + (2 − 1

4
δ)λ3 + (6 − 1

2
δ)λ4 + (8 − δ)λ5 + s−2 = 6 − 1

2
δ

λ1 + λ2 + λ3 + λ4 + λ5 = 1

s−1 , s−2 , s+
1 ≥ 0 i = 1, ..., m

λj ≥ 0 j = 1, ..., 5

(20)

The optimal solution of the above problem is λ∗
4 = 1, λ∗

1 = λ∗
2 = λ∗

3 = λ∗
5 =

0, s+∗
1 = s−∗

1 = s+∗
2 = 0 and the optimal value of the objective function is zero

which means that DMU4 is Pareto-Koopmans efficient. Optimal basic variables are

λ∗
3, λ

∗
4, λ

∗
5, s

−∗
1 . The optimal basis matrix is

B =

⎡⎢⎢⎣
2.9997 0 1.9998 1.9998

5.9995 1 1.9998 7.999

5.9995 0 7.999 1.9998

1 0 1 1

⎤⎥⎥⎦ ,

with inverse

B−1 =

⎡⎢⎢⎣
1 0 0 −1.9998

−2.0002 1 1 −5.9988

−0.6667 0 0.1667 0.9999

−0.3333 0 −0.1667 1.9998

⎤⎥⎥⎦ ,

We must exert the following changes on inputs and outputs of DMU4:

̂̃y14 = S[3, 1
4

+ α1] α1 � 0 ⇒ ϕ(̂̃y14) = 3 − 1
4
δ − δα1̂̃x14 = S[6, 1

2
− β1] β1 � 0 ⇒ ϕ(̂̃x14) = 6 − 1

2
δ + δβ1̂̃x24 = S[6, 1

2
− β2] β2 � 0 ⇒ ϕ(̂̃x24) = 6 − 1

2
δ + δβ′

2

(21)

We have the following optimal basis perturbation matrix and change of the right

hand side vector:

D =

⎡⎢⎢⎣
−δα1 0 0 0

δβ1 0 0 0

δβ2 0 0 0

0 0 0 0

⎤⎥⎥⎦ ,
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âp = ap + [−δα1 δβ1 δβ2 0]T (22)

cT
B = [0 1 0 0] (23)

wT = cT
BB−1 = [−2.0002 1 1 − 5.9988] (24)

p = −δα1 , τ = −1
1−δα1

, p �= −1 , 1 + p > 0

Sufficient conditions for preserving efficiency of DMU4 are

(b−1
11 cj − w1y1j)(δα1) − (b−1

12 cj − w2y1j)(δβ1) − (b−1
13 cj − w3y1j)(δβ2) � cj j = 1, 2, 6, 8

(25)

so the following system of inequalities obtains:

0 � δα1 < 1 , δβ1 � 0 , δβ2 � 0

9.99(δα1) + 1.99(δβ1) + 1.99(δβ2) � 5.99

−δα1 − δβ1 + δβ2 � 1.0002

3 − 1
4
δ − δα1 > 0 , 1

2
− β1 > 0 , 1

2
− β2 > 0

The solution set of the system of inequalities shows the amount of possible

changes of inputs and outputs of DMU4.

5 Conclusion

In this paper we studied a sensitivity analysis method in fuzzy environment. Inputs

and outputs were assumed symmetric triangular fuzzy numbers. We found sufficient

conditions for simultaneous change of the margins of all outputs and all inputs of an

efficient DMU which preserves efficiency. In other words, we found a region in which

inputs and outputs of an efficient DMU, which is under consideration can change so

that it remains efficient. The margins of inputs were decreased in order to increase

inputs, and outputs were decreased by increasing the margins of outputs.
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