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1 Introduction

Let Q̂ be a bounded open set of R
n
x × (0, T ), T > 0. We define

Ωs = Q̂ ∩ {t = s; 0 ≤ s ≤ T}
and suppose that the sets Ωs are open for all s.
We represent by Γs the smooth boundary of Ωs.
The lateral boundary of Q̂ is givem by

Σ̂ =
⋃

0<s<T

Γs × {s}

The boundary of Q̂ is define by

∂Q̂ = Ω0 ∪ Σ̂ ∪ ΩT

where, Ω0 is bounded open set of R
n
x with x = (x1, x2, . . . , xn).

Let Ω be a bounded open set of R
n
x and denote by Q = Ω × (0, T ) a cylinder

such that Q̂ ⊂ Q.
Let Γ be the boundary of Ω also smooth and let Σ = Γ × (0, T ) the lateral
boundary of the cylinder Q.
Let Ω be a bounded open set in R

n with boundary Γ smooth and let T is a
positive real number.
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In the set Q̂ we will consider the following problem:∣∣∣∣ u′ + Au = f
u(0) = u0

(1)

where, A is the pseudo Laplacian operator.

The problem (1) in cylinder domain was solve in J.L.Lions [2] by Compact-
ness Method. Also in J.L.Lions [2] was given by other solution of this problem
utilizing the Monotony Method, due to M.Visik [7].
An problem in manifolds with this operator was study by authors, to appear
[5].

In this work we will analyze the problem (1) in the Non Cylindric Domain Q̂.
We will use the Penazation Method, idealized by J.L.Lions and the Monotony
Method.
The proof consist in transform the problem (1) in a problem in the cylinder

Q, solve and then restrict the problem to the non cylinder domain Q̂.

2 Notations, Hypotheses

All derivates are in the distribution sense. By D(Ω) we will denote the space
of the testes functions in Ω.
We will represent by W 1,p

0 (Ω) the closed of D(Ω) in W 1,p(Ω). The dual space
of W 1,p

0 (Ω) is denote by W−1,p′(Ω), where p′ denote the conjugate exponent of
p, that is, 1

p
+ 1

p′ = 1.
Let A the pseudo Laplacian operator, that is,

A : W 1,p
0 (Ω) → W−1,p′(Ω)
w �→ A(w)

tal que

A(w) = −
n∑

i=1

∂

∂xi

(∣∣∣∂w

∂xi

∣∣∣p−2 ∂w

∂xi

)
, 2 < p < ∞.

We reminder that the operator A has the followings proprieties:
• A is bounded, that is, carry bounded in bounded;
• A monotonic, hemicontinuous, 〈A(u), u〉 = ‖u‖p

W 1,p
0

, coercive.

We go assume the following hypotheses:

(H1) The family open {Ωs}0<s<T is increasing in the following sense.
If t1 ≤ t2 then proj

�n
Ωt1 ⊆ proj

�n
Ωt2

(H2) Regularity of the boundary of Q̂
If v ∈ W 1,p

0 (Ω) and v = 0 q.s in Ω − Ωt then v ∈ W 1,p
0 (Ωt).
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Finaly, we consider the function

M(x, t) =

∣∣∣∣∣ 1, in Q − Q̂ ∪ {Ω0 × {0}}
0, in Q̂ ∪ Ω0 × {0}

and β(u) = 1
ε
M(x, t)u, ∀ ε > 0.

We note that M ∈ L∞(Q).

Definition 2.1 The function u : Q̂ → R is a weak solution of the problem (1)
if
u ∈ Lp(0, T ; W 1,p

0 (Ωt)) and

d

dt
(u(t), v) + 〈Au(t), v〉 = (f(t), v) in D′(Ωt),

for all v ∈ W 1,p
0 (Ωt)

u(0) = u0

(2)

3 Main Result

In this section we will solve the follow result

Theorem 1 Given f ∈ Lp′(0, T ; W−1,p′(Ωt)) and u0 ∈ W 1,p
0 (Ωt), then there

exists a unique solution of the problem (1) in the sense of the definition 2.1.

The idea of proof consist in transform the problem (1) in a equivalent problem
in the cylinder utilizing the penalization method.

3.1 Penalized Problem

Given ε > 0 to each function uε : Q → R solution of the problem:∣∣∣∣∣∣
u′

ε + Auε + 1
ε
Muε = f̃ in Q

uε = 0 on Σ
uε(x, 0) = ũ0 in Ω

(3)

where

f̃(x, t) =

∣∣∣∣∣ f(x, t) in Q̂

0 in Q − Q̂

and

ũ(x, 0) =

∣∣∣∣ u0 in Ω0

0 in Ω − Ω0

where ũ0 ∈ W 1,p
0 (Ω).

From separability of V = W 1,p
0 (Ω) there exists an hilbetian’s base (wν)ν ⊂ V.

Let Vm = [w1, . . . , wm] be the subspace of V generate by m first vectors of
(wν)ν .
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3.2 Approximated Problem

Consider uεm(t) ∈ Vm such that:∣∣∣∣∣∣∣∣∣

uεm(t) ∈ Vm

(u′
εm(t), v) + (Auεm(t), v)+

1

ε
(Muεm(t), v) = (f̃(t), v), ∀v ∈ Vm

uεm(0) = ũ0εm → ũ0

(4)

Hence, the system (4) has a local solution on the interval [0, tm), with tm < T .
This solution can be extended to the whole interval [0, T ] as consequence of
the priori estimates that shall be proved in the next step.

3.3 Estimates I

Considering v = uεm(t) in (4)1 and using the proprieties of the operator A we
have the existence of a subsequence (uεν) ⊂ (uεm) such that:

uεν(T ) ⇀ ζ in L2(Ω) (5)

uεν
�
⇀ uε in L∞(0, T, L2(Ω)) (6)

uεν ⇀ uε in Lp(0, T, W 1,p
0 (Ω)) (7)

Auεν ⇀ χ in Lp′(0, T, W−1,p′(Ω)) (8)

Writing the approximated equation with ν, multiplying by ϕ ∈ D(0, T ), inte-
grating from 0 to T and integrating by parts we obtain:

−
∫ T

0

(uεν(t), v)ϕ′(t)dt +

∫ T

0

(Auεν(t), v)ϕ(t)dt

+

∫ T

0

1

ε
(Muεν(t), v)ϕ(t)dt =

∫ T

0

(f̃(t), v)ϕ(t)dt,

∀v ∈ Vm.

(9)

3.4 Convergence of the term: 1
ε(M(t)uεν(t), v)

As uεν is bounded in L∞(0, T ; L2(Ω)) ↪→ L2(0, T ; L2(Ω)) = L2(Q), hence uεν

is bounded in L2(Q). Therefore,

uεν ⇀ uε in L2(Q) (10)

But, Mφ ∈ L2(Q), because M ∈ L∞(Q). Therefore (uεν, Mφ) → (uε, Mφ), ∀φ ∈
L2(Q).
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Taking to the limit in (9) when ν → ∞, using the convergence obtained and
using the density of Vm in V and we have:

d
dt

(uε(t), v) + (χ(t), v) + 1
ε
(Muε(t), v) = (f̃(t), v),

∀ v ∈ V, in the sense of D′(0, T ).
(11)

To show that, χ(t) = A(uε(t)), we used the your monotony and hemicontinuity.
While that the verification of uε(0) = ũ0 and uεm(T ) ⇀ uε(T ) is done form
standard.
Thus, by Teman’s Lemma [6] we have

u′
ε + Auε +

1

ε
Muε = f̃ in D′(0, T ). (12)

Multiplying (12) by v = uε, we have, as in the estimates I, when ε → 0

uε
�
⇀ w in L∞(0, T, L2(Ω)) (13)

uε ⇀ w in Lp(0, T, W 1,p
0 (Ω)), (14)

Muε ⇀ Mw in L2(0, T, L2(Ω)). (15)

From estimates, we obtain, when ε → 0, Muε → 0 in L2(0, T, L2(Ω)), where
Mw = 0 a.s. in Q. Therefore

w = 0 a.e. Q − Q̂ ∪ {Ω0 × {0}}. (16)

De (14) e (16) and of the hypotheses (H2), if u to design the restriction of w

the Q̂, we have
u ∈ Lp(0, T ; W 1,p

0 (Ωt))

3.5 Restriction the Q̂

The restriction of the equation (12) to Q̂, is

(û′
ε(t), v) + (A(ûε(t)), v) = (f(t), v),

∀ v ∈ W 1,p
0 (Ωt),

(17)

where ûε represent the restriction of uε a Q̂
As ûε ∈ Cs([0, T ], W 1,p

0 (Ωt)) we have that the application t �→ 〈ûε(t), y〉 is
continuous for y ∈ W−1,p′(Ωt), hence multiplying the equation (17) by θ ∈
D(0, T ), integrating from 0 to T an integrating by parts we obtain

−
∫ T

0

(ûε(t), v)θ′(t)dt +

∫ T

0

(A(ûε(t)), v)θ(t)dt

=

∫ T

0

(f(t), v)θ(t)dt, ∀ v ∈ W 1,p
0 (Ωt).

(18)
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As u, ûε are the restrictions of w, uε respectively, we have of (13) and (14),
when ε → 0

ûε
�
⇀ u in L∞(0, T, L2(Ωt)) (19)

ûε ⇀ u in Lp(0, T, W 1,p
0 (Ωt)) (20)

Aûε ⇀ ξ in Lp′(0, T, W−1,p′(Ωt)) (21)

ûε(T ) ⇀ β in L2(Ωt) (22)

Analogously, as in the first part of the proof, show that β = u(T ) e ξ = Au.
Taking to the limit in (18) when ε → 0 and using the convergence obtained we
have

d

dt
(u(t), v) + (A(u(t)), v) = (f(t), v),

∀v ∈ W 1,p
0 (Ωt) em D′(0, T ).

As u ∈ C0([0, T ], W−1,p′(Ω)) make sense calculate u(0).
Being by first part of the proof uε(0) = ũ0 we have that ûε(0) = u0 where we
conclude u(0) = u0.
For to show the uniqueness is used the monotony of the pseudo Laplacian
operator A. What that conclude the proof of the Theorem 1.

3.6 Asymptotic Behavior

The solution from Theorem 1 can be extended the interval [0,∞), hence we
make sense to think in decay.
From (17) with the v = ûε, the energy of the solution associated to the restrict

system (3) to Q̂ is given by Eε(t) = 1
2
|ûε|2.

Taking the duality (3)1 restrict to Q̂ com ûε we have

1

2

d

dt
|ûε|2 + ‖ûε‖p = 0 (23)

where we obtain
1

2

d

dt
|ûε|2 ≤ 0, that is,

d

dt
Eε(t) ≤ 0, ∀t ≥ 0.

Therefore, Eε is a nonnegative increasing function.

Integrating (23) de 0 a t we have Eε(t) +

∫ t

0

‖ûε‖p
V = Eε(0). Where, we obtain

Eε(t) − Eε(t + 1) =

∫ t

0

‖ûε(s)‖p
V ds.

Using the immersion of W 1
0 (Ωt) in L2(Ωt) we obtain∫ t+1

t

|ûε|2ds ≤ c1

∫ t+1

t

‖ûε‖p
V .
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Thus ∫ t+1

t

|ûε|2ds ≤ C[Eε(t) − Eε(t + 1)] = F 2(t) (24)

We consider now the subintervals (t, t+ 1
4
) and (t+ 3

4
, t+1) of (t, t+1). Using

the Medium Value Theorem for integrals, we have that exists t1 ∈ (t, t + 1
4
)

such that
1

4
|ûε| =

∫ t+ 1
4

t

|ûε|2ds ≤
∫ t+1

t

|ûε|2ds ≤ F 2(t) (25)

Where, we obtain |ûε(t1)| ≤ 2F 2(t).
Analogously we obtain t2 ∈ (t + 3

4
, t + 1) such that |ûε(t2)| ≤ 2F 2(t).

Integrating the energy in [t1, t2] and using the Medium Value Theorem for
integrals, we have that exists t∗ ∈ (t1, t2) such that

(t2 − t1)Eε(t
∗) =

∫ t2

t1

Eε(s)ds ≤ F 2(t)

As t2 − t1 > 1
2

we have that: Eε(t
∗) ≤ 2F 2(t).

Let τ1, τ2 ∈ [t, t + 1] with τ1 < τ2 and τ1 = t∗. We have

Eε(τ2) ≤ Eε(t
∗) +

∫ t+1

t

‖ûε‖pds, ∀τ2 ∈ [t, t + 1]

Where, we obtain

sup
t≤s≤t+1

Eε(s) ≤ Eε(t
∗) +

∫ t+1

t

‖ûε(s)‖pds

Thus and noting that ∫ t+1

t

‖ûε‖pds ≤ 1

c
F 2(t),

we obtain
sup

t≤s≤t+1

Eε(s) ≤ C[Eε(t) − Eε(t + 1)]

Therefore, by Nakao’s Lemma [3], we have

Eε(t) ≤ Ce−δt, ∀ε > 0.

We have that ûε(t) ⇀ u(t) in L2(Ωt), when ε → 0. Using this convergence and
taking to the inferior limit in the inequality above, when ε → 0, we obtain:

E(t) ≤ Ce−δt.

What that characterize the asymptotic behavior
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