Exponential Decay for Nonlinear Problem in non Cylindrical Domain

Alexandro O. Marinho
UFPI-CMRV- Departamento de Matematica 65630-100, Parnaiba, PI, Brazil
alexmaiver@hotmail.com

Osmundo A. Lima and Aldo T. Lourêdo
Depto de Matematica e Estatistica, UEPB
58109-753, Campina Grande, PB, Brazil
aldotl@bol.com.br, osmundo@hs24.com.br

1 Introduction

Let \widehat{Q} be a bounded open set of $\mathbb{R}_{x}^{n} \times(0, T), T>0$. We define

$$
\Omega_{s}=\widehat{Q} \cap\{t=s ; 0 \leq s \leq T\}
$$

and suppose that the sets Ω_{s} are open for all s.
We represent by Γ_{s} the smooth boundary of Ω_{s}.
The lateral boundary of \widehat{Q} is givem by

$$
\widehat{\Sigma}=\bigcup_{0<s<T} \Gamma_{s} \times\{s\}
$$

The boundary of \widehat{Q} is define by

$$
\partial \widehat{Q}=\Omega_{0} \cup \widehat{\Sigma} \cup \Omega_{T}
$$

where, Ω_{0} is bounded open set of \mathbb{R}_{x}^{n} with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Let Ω be a bounded open set of \mathbb{R}_{x}^{n} and denote by $Q=\Omega \times(0, T)$ a cylinder such that $\widehat{Q} \subset Q$.
Let Γ be the boundary of Ω also smooth and let $\Sigma=\Gamma \times(0, T)$ the lateral boundary of the cylinder Q.
Let Ω be a bounded open set in \mathbb{R}^{n} with boundary Γ smooth and let T is a positive real number.

In the set \widehat{Q} we will consider the following problem:

$$
\left\lvert\, \begin{align*}
& u^{\prime}+\mathcal{A} u=f \tag{1}\\
& u(0)=u_{0}
\end{align*}\right.
$$

where, \mathcal{A} is the pseudo Laplacian operator.
The problem (1) in cylinder domain was solve in J.L.Lions [2] by Compactness Method. Also in J.L.Lions [2] was given by other solution of this problem utilizing the Monotony Method, due to M.Visik [7].
An problem in manifolds with this operator was study by authors, to appear [5].
In this work we will analyze the problem (1) in the Non Cylindric Domain \widehat{Q}. We will use the Penazation Method, idealized by J.L.Lions and the Monotony Method.
The proof consist in transform the problem (1) in a problem in the cylinder Q, solve and then restrict the problem to the non cylinder domain \widehat{Q}.

2 Notations, Hypotheses

All derivates are in the distribution sense. By $\mathcal{D}(\Omega)$ we will denote the space of the testes functions in Ω.
We will represent by $W_{0}^{1, p}(\Omega)$ the closed of $\mathcal{D}(\Omega)$ in $W^{1, p}(\Omega)$. The dual space of $W_{0}^{1, p}(\Omega)$ is denote by $W^{-1, p^{\prime}}(\Omega)$, where p^{\prime} denote the conjugate exponent of p, that is, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Let \mathcal{A} the pseudo Laplacian operator, that is,

$$
\begin{array}{cccc}
\mathcal{A}: \quad W_{0}^{1, p}(\Omega) & \rightarrow & W^{-1, p^{\prime}}(\Omega) \\
w & \mapsto & \mathcal{A}(w)
\end{array}
$$

tal que

$$
\mathcal{A}(w)=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial w}{\partial x_{i}}\right|^{p-2} \frac{\partial w}{\partial x_{i}}\right), 2<p<\infty
$$

We reminder that the operator \mathcal{A} has the followings proprieties:

- \mathcal{A} is bounded, that is, carry bounded in bounded;
- \mathcal{A} monotonic, hemicontinuous, $\langle\mathcal{A}(u), u\rangle=\|u\|_{W_{0}^{1, p}}^{p}$, coercive.

We go assume the following hypotheses:
(H1) The family open $\left\{\Omega_{s}\right\}_{0<s<T}$ is increasing in the following sense.
If $t_{1} \leq t_{2}$ then $\operatorname{proj}_{\mathbb{R}^{n}} \Omega_{t_{1}} \subseteq \operatorname{proj}_{\mathbb{R}^{n}} \Omega_{t_{2}}$
(H2) Regularity of the boundary of \widehat{Q}
If $v \in W_{0}^{1, p}(\Omega)$ and $v=0$ q.s in $\Omega-\Omega_{t}$ then $v \in W_{0}^{1, p}\left(\Omega_{t}\right)$.

Finaly, we consider the function

$$
M(x, t)=\left\lvert\, \begin{aligned}
& 1, \text { in } Q-\widehat{Q} \cup\left\{\Omega_{0} \times\{0\}\right\} \\
& 0, \text { in } \widehat{Q} \cup \Omega_{0} \times\{0\}
\end{aligned}\right.
$$

and $\beta(u)=\frac{1}{\epsilon} M(x, t) u, \forall \epsilon>0$.
We note that $M \in L^{\infty}(Q)$.
Definition 2.1 The function $u: \widehat{Q} \rightarrow \mathbb{R}$ is a weak solution of the problem (1) if
$u \in L^{p}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right)$ and

$$
\begin{gather*}
\frac{d}{d t}(u(t), v)+\langle\mathcal{A} u(t), v\rangle=(f(t), v) \text { in } D^{\prime}\left(\Omega_{t}\right), \\
\text { for all } v \in W_{0}^{1, p}\left(\Omega_{t}\right) \tag{2}\\
u(0)=u_{0}
\end{gather*}
$$

3 Main Result

In this section we will solve the follow result
Theorem 1 Given $f \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega_{t}\right)\right)$ and $u_{0} \in W_{0}^{1, p}\left(\Omega_{t}\right)$, then there exists a unique solution of the problem (1) in the sense of the definition 2.1.

The idea of proof consist in transform the problem (1) in a equivalent problem in the cylinder utilizing the penalization method.

3.1 Penalized Problem

Given $\epsilon>0$ to each function $u_{\epsilon}: Q \rightarrow \mathbb{R}$ solution of the problem:

$$
\left\lvert\, \begin{align*}
& u_{\epsilon}^{\prime}+\mathcal{A} u_{\epsilon}+\frac{1}{\epsilon} M u_{\epsilon}=\tilde{f} \text { in } Q \\
& u_{\epsilon}=0 \text { on } \Sigma \tag{3}\\
& u_{\epsilon}(x, 0)=\widetilde{u}_{0} \text { in } \Omega
\end{align*}\right.
$$

where

$$
\widetilde{f}(x, t)=\left\lvert\, \begin{aligned}
& f(x, t) \text { in } \widehat{Q} \\
& 0 \text { in } Q-\widehat{Q}
\end{aligned}\right.
$$

and

$$
\widetilde{u}(x, 0)=\left\lvert\, \begin{aligned}
& u_{0} \text { in } \Omega_{0} \\
& 0 \text { in } \Omega-\Omega_{0}
\end{aligned}\right.
$$

where $\widetilde{u}_{0} \in W_{0}^{1, p}(\Omega)$.
From separability of $V=W_{0}^{1, p}(\Omega)$ there exists an hilbetian's base $\left(w_{\nu}\right)_{\nu} \subset V$. Let $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ be the subspace of V generate by m first vectors of $\left(w_{\nu}\right)_{\nu}$.

3.2 Approximated Problem

Consider $u_{\epsilon m}(t) \in V_{m}$ such that:

$$
\left\lvert\, \begin{align*}
& u_{\epsilon m}(t) \in V_{m} \tag{4}\\
& \left(u_{\epsilon m}^{\prime}(t), v\right)+\left(\mathcal{A} u_{\epsilon m}(t), v\right)+ \\
& \frac{1}{\epsilon}\left(M u_{\epsilon m}(t), v\right)=(\widetilde{f}(t), v), \forall v \in V_{m} \\
& u_{\epsilon m}(0)=\widetilde{u}_{0 \epsilon m} \rightarrow \widetilde{u}_{0}
\end{align*}\right.
$$

Hence, the system (4) has a local solution on the interval $\left[0, t_{m}\right)$, with $t_{m}<T$. This solution can be extended to the whole interval $[0, T]$ as consequence of the priori estimates that shall be proved in the next step.

3.3 Estimates I

Considering $v=u_{\epsilon m}(t)$ in $(4)_{1}$ and using the proprieties of the operator \mathcal{A} we have the existence of a subsequence $\left(u_{\epsilon \nu}\right) \subset\left(u_{\epsilon m}\right)$ such that:

$$
\begin{gather*}
u_{\epsilon \nu}(T) \rightharpoonup \zeta \text { in } L^{2}(\Omega) \tag{5}\\
u_{\epsilon \nu} \stackrel{\star}{\rightharpoonup} u_{\epsilon} \text { in } L^{\infty}\left(0, T, L^{2}(\Omega)\right) \tag{6}\\
u_{\epsilon \nu} \rightharpoonup u_{\epsilon} \text { in } L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right) \tag{7}\\
\mathcal{A} u_{\epsilon \nu} \rightharpoonup \chi \text { in } L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}(\Omega)\right) \tag{8}
\end{gather*}
$$

Writing the approximated equation with ν, multiplying by $\varphi \in \mathcal{D}(0, T)$, integrating from 0 to T and integrating by parts we obtain:

$$
\begin{align*}
& -\int_{0}^{T}\left(u_{\epsilon \nu}(t), v\right) \varphi^{\prime}(t) d t+\int_{0}^{T}\left(\mathcal{A} u_{\epsilon \nu}(t), v\right) \varphi(t) d t \\
& +\int_{0}^{T} \frac{1}{\epsilon}\left(M u_{\epsilon \nu}(t), v\right) \varphi(t) d t=\int_{0}^{T}(\widetilde{f}(t), v) \varphi(t) d t \tag{9}\\
& \forall v \in V_{m}
\end{align*}
$$

3.4 Convergence of the term: $\frac{1}{\epsilon}\left(M(t) u_{\epsilon \nu}(t), v\right)$

As $u_{\epsilon \nu}$ is bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \hookrightarrow L^{2}\left(0, T ; L^{2}(\Omega)\right)=L^{2}(Q)$, hence $u_{\epsilon \nu}$ is bounded in $L^{2}(Q)$. Therefore,

$$
\begin{equation*}
u_{\epsilon \nu} \rightharpoonup u_{\epsilon} \text { in } L^{2}(Q) \tag{10}
\end{equation*}
$$

But, $M \phi \in L^{2}(Q)$, because $M \in L^{\infty}(Q)$. Therefore $\left(u_{\epsilon \nu}, M \phi\right) \rightarrow\left(u_{\epsilon}, M \phi\right), \forall \phi \in$ $L^{2}(Q)$.

Taking to the limit in (9) when $\nu \rightarrow \infty$, using the convergence obtained and using the density of V_{m} in V and we have:

$$
\begin{align*}
& \frac{d}{d t}\left(u_{\epsilon}(t), v\right)+(\chi(t), v)+\frac{1}{\epsilon}\left(M u_{\epsilon}(t), v\right)=(\widetilde{f}(t), v), \tag{11}\\
& \forall v \in V, \text { in the sense of } \mathcal{D}^{\prime}(0, T) .
\end{align*}
$$

To show that, $\chi(t)=\mathcal{A}\left(u_{\epsilon}(t)\right)$, we used the your monotony and hemicontinuity. While that the verification of $u_{\epsilon}(0)=\widetilde{u}_{0}$ and $u_{\epsilon m}(T) \rightharpoonup u_{\epsilon}(T)$ is done form standard.
Thus, by Teman's Lemma [6] we have

$$
\begin{equation*}
u_{\epsilon}^{\prime}+\mathcal{A} u_{\epsilon}+\frac{1}{\epsilon} M u_{\epsilon}=\widetilde{f} \text { in } \mathcal{D}^{\prime}(0, T) \tag{12}
\end{equation*}
$$

Multiplying (12) by $v=u_{\epsilon}$, we have, as in the estimates I, when $\epsilon \rightarrow 0$

$$
\begin{gather*}
u_{\epsilon} \stackrel{\star}{\rightharpoonup} w \text { in } L^{\infty}\left(0, T, L^{2}(\Omega)\right) \tag{13}\\
u_{\epsilon} \rightharpoonup w \text { in } L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right), \tag{14}\\
M u_{\epsilon} \rightharpoonup M w \text { in } L^{2}\left(0, T, L^{2}(\Omega)\right) . \tag{15}
\end{gather*}
$$

From estimates, we obtain, when $\epsilon \rightarrow 0, M u_{\epsilon} \rightarrow 0$ in $L^{2}\left(0, T, L^{2}(\Omega)\right)$, where $M w=0$ a.s. in Q. Therefore

$$
\begin{equation*}
w=0 \quad \text { a.e. } \quad Q-\widehat{Q} \cup\left\{\Omega_{0} \times\{0\}\right\} \tag{16}
\end{equation*}
$$

De (14) e (16) and of the hypotheses (H2), if u to design the restriction of w the \widehat{Q}, we have

$$
u \in L^{p}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right)
$$

3.5 Restriction the \widehat{Q}

The restriction of the equation (12) to \widehat{Q}, is

$$
\begin{align*}
& \left(\widehat{u}_{\epsilon}^{\prime}(t), v\right)+\left(\mathcal{A}\left(\widehat{u}_{\epsilon}(t)\right), v\right)=(f(t), v), \\
& \forall v \in W_{0}^{1, p}\left(\Omega_{t}\right), \tag{17}
\end{align*}
$$

where \widehat{u}_{ϵ} represent the restriction of u_{ϵ} a \widehat{Q}
As $\widehat{u}_{\epsilon} \in C_{s}\left([0, T], W_{0}^{1, p}\left(\Omega_{t}\right)\right)$ we have that the application $t \mapsto\left\langle\widehat{u}_{\epsilon}(t), y\right\rangle$ is continuous for $y \in W^{-1, p^{\prime}}\left(\Omega_{t}\right)$, hence multiplying the equation (17) by $\theta \in$ $\mathcal{D}(0, T)$, integrating from 0 to T an integrating by parts we obtain

$$
\begin{align*}
& -\int_{0}^{T}\left(\widehat{u}_{\epsilon}(t), v\right) \theta^{\prime}(t) d t+\int_{0}^{T}\left(\mathcal{A}\left(\widehat{u}_{\epsilon}(t)\right), v\right) \theta(t) d t \tag{18}\\
& =\int_{0}^{T}(f(t), v) \theta(t) d t, \quad \forall v \in W_{0}^{1, p}\left(\Omega_{t}\right)
\end{align*}
$$

As $u, \widehat{u}_{\epsilon}$ are the restrictions of w, u_{ϵ} respectively, we have of (13) and (14), when $\epsilon \rightarrow 0$

$$
\begin{gather*}
\widehat{u}_{\epsilon} \stackrel{\star}{\rightharpoonup} u \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega_{t}\right)\right) \tag{19}\\
\widehat{u}_{\epsilon} \rightharpoonup u \text { in } L^{p}\left(0, T, W_{0}^{1, p}\left(\Omega_{t}\right)\right) \tag{20}\\
\mathcal{A} \widehat{u}_{\epsilon} \rightharpoonup \xi \text { in } L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\Omega_{t}\right)\right) \tag{21}\\
\widehat{u}_{\epsilon}(T) \rightharpoonup \beta \text { in } L^{2}\left(\Omega_{t}\right) \tag{22}
\end{gather*}
$$

Analogously, as in the first part of the proof, show that $\beta=u(T)$ e $\xi=\mathcal{A} u$. Taking to the limit in (18) when $\epsilon \rightarrow 0$ and using the convergence obtained we have

$$
\begin{gathered}
\frac{d}{d t}(u(t), v)+(\mathcal{A}(u(t)), v)=(f(t), v) \\
\forall v \in W_{0}^{1, p}\left(\Omega_{t}\right) \text { em } \mathcal{D}^{\prime}(0, T)
\end{gathered}
$$

As $u \in C^{0}\left([0, T], W^{-1, p^{\prime}}(\Omega)\right)$ make sense calculate $u(0)$.
Being by first part of the proof $u_{\epsilon}(0)=\widetilde{u}_{0}$ we have that $\widehat{u}_{\epsilon}(0)=u_{0}$ where we conclude $u(0)=u_{0}$.
For to show the uniqueness is used the monotony of the pseudo Laplacian operator \mathcal{A}. What that conclude the proof of the Theorem 1 .

3.6 Asymptotic Behavior

The solution from Theorem 1 can be extended the interval $[0, \infty)$, hence we make sense to think in decay.
From (17) with the $v=\widehat{u}_{\epsilon}$, the energy of the solution associated to the restrict system (3) to \widehat{Q} is given by $E_{\epsilon}(t)=\frac{1}{2}\left|\widehat{u}_{\epsilon}\right|^{2}$.
Taking the duality $(3)_{1}$ restrict to \widehat{Q} com \widehat{u}_{ϵ} we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left|\widehat{u}_{\epsilon}\right|^{2}+\left\|\widehat{u}_{\epsilon}\right\|^{p}=0 \tag{23}
\end{equation*}
$$

where we obtain $\frac{1}{2} \frac{d}{d t}\left|\widehat{u}_{\epsilon}\right|^{2} \leq 0$, that is, $\frac{d}{d t} E_{\epsilon}(t) \leq 0, \forall t \geq 0$.
Therefore, E_{ϵ} is a nonnegative increasing function. Integrating (23) de 0 a t we have $E_{\epsilon}(t)+\int_{0}^{t}\left\|\widehat{u}_{\epsilon}\right\|_{V}^{p}=E_{\epsilon}(0)$. Where, we obtain

$$
E_{\epsilon}(t)-E_{\epsilon}(t+1)=\int_{0}^{t}\left\|\widehat{u}_{\epsilon}(s)\right\|_{V}^{p} d s
$$

Using the immersion of $W_{0}^{1}\left(\Omega_{t}\right)$ in $L^{2}\left(\Omega_{t}\right)$ we obtain

$$
\int_{t}^{t+1}\left|\widehat{u}_{\epsilon}\right|^{2} d s \leq c_{1} \int_{t}^{t+1}\left\|\widehat{u}_{\epsilon}\right\|_{V}^{p}
$$

Thus

$$
\begin{equation*}
\int_{t}^{t+1}\left|\widehat{u}_{\epsilon}\right|^{2} d s \leq C\left[E_{\epsilon}(t)-E_{\epsilon}(t+1)\right]=F^{2}(t) \tag{24}
\end{equation*}
$$

We consider now the subintervals $\left(t, t+\frac{1}{4}\right)$ and $\left(t+\frac{3}{4}, t+1\right)$ of $(t, t+1)$. Using the Medium Value Theorem for integrals, we have that exists $t_{1} \in\left(t, t+\frac{1}{4}\right)$ such that

$$
\begin{equation*}
\frac{1}{4}\left|\widehat{u}_{\epsilon}\right|=\int_{t}^{t+\frac{1}{4}}\left|\widehat{u}_{\epsilon}\right|^{2} d s \leq \int_{t}^{t+1}\left|\widehat{u}_{\epsilon}\right|^{2} d s \leq F^{2}(t) \tag{25}
\end{equation*}
$$

Where, we obtain $\left|\widehat{u}_{\epsilon}\left(t_{1}\right)\right| \leq 2 F^{2}(t)$.
Analogously we obtain $t_{2} \in\left(t+\frac{3}{4}, t+1\right)$ such that $\left|\widehat{u}_{\epsilon}\left(t_{2}\right)\right| \leq 2 F^{2}(t)$.
Integrating the energy in $\left[t_{1}, t_{2}\right]$ and using the Medium Value Theorem for integrals, we have that exists $t^{*} \in\left(t_{1}, t_{2}\right)$ such that

$$
\left(t_{2}-t_{1}\right) E_{\epsilon}\left(t^{*}\right)=\int_{t_{1}}^{t_{2}} E_{\epsilon}(s) d s \leq F^{2}(t)
$$

As $t_{2}-t_{1}>\frac{1}{2}$ we have that: $E_{\epsilon}\left(t^{*}\right) \leq 2 F^{2}(t)$.
Let $\tau_{1}, \tau_{2} \in[t, t+1]$ with $\tau_{1}<\tau_{2}$ and $\tau_{1}=t^{*}$. We have

$$
E_{\epsilon}\left(\tau_{2}\right) \leq E_{\epsilon}\left(t^{*}\right)+\int_{t}^{t+1}\left\|\widehat{u}_{\epsilon}\right\|^{p} d s, \forall \tau_{2} \in[t, t+1]
$$

Where, we obtain

$$
\sup _{t \leq s \leq t+1} E_{\epsilon}(s) \leq E_{\epsilon}\left(t^{*}\right)+\int_{t}^{t+1}\left\|\widehat{u}_{\epsilon}(s)\right\|^{p} d s
$$

Thus and noting that

$$
\int_{t}^{t+1}\left\|\widehat{u}_{\epsilon}\right\|^{p} d s \leq \frac{1}{c} F^{2}(t)
$$

we obtain

$$
\sup _{t \leq s \leq t+1} E_{\epsilon}(s) \leq C\left[E_{\epsilon}(t)-E_{\epsilon}(t+1)\right]
$$

Therefore, by Nakao's Lemma [3], we have

$$
E_{\epsilon}(t) \leq C e^{-\delta t}, \forall \epsilon>0
$$

We have that $\widehat{u}_{\epsilon}(t) \rightharpoonup u(t)$ in $L^{2}\left(\Omega_{t}\right)$, when $\epsilon \rightarrow 0$. Using this convergence and taking to the inferior limit in the inequality above, when $\epsilon \rightarrow 0$, we obtain:

$$
E(t) \leq C e^{-\delta t}
$$

What that characterize the asymptotic behavior

References

[1] J.Limarco, H.Clark \& L.A. Medeiros. On equation of Benjamim - Bonna - Mahony type. Nonlinear Analysis TMA, vol. 59, no. 8 (2004), pp 1205 1243
[2] Lions, J.L : Quelques Methodes des Resolution des Probléms aux Limites non Lineaires. Dunod, Paris (1969).
[3] Nakao M.:Convergence of the solutions of the wave equation with a nonlinear dissipative term to the steady state, Memoirs of the Faculty of Science Kyushu University - Ser. A, Vol. 30, No. 2, 1976.
[4] O.A.Lima, A.T.Louredo \& A.M. Oliveira : Weak solutions for a stronglycoupled nonlinear system, Electronic Journal of Differential Equations. Vol. 2006, No. 130, pp. 1-18.
[5] O.A.Lima, A.T.Louredo \& A.M. Oliveira :On a Parabolic Strongly Non Linear Problem on Manifolds (to appear).
[6] Temam R.; Navier-Stokes Equations, North-Holland, 1979.
[7] Visik I.M.; Systemes Differentiels Quasi-Lineaires Fortement Elliptiques Sous Form Divergente, Trudy Moskovskogo Mat. Obsc., t.12, 1963, pp.125-184.

Received: March, 2009

