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Abstract 
 
In this work, we propose to study a generalized problem called pseudo Carlemann 
system in three dimensions. We will use the decomposition of operators method , 
who cut the problem into two problems which we solved summeltanely.  We will 
prove primarily a result of uniqueness of solution. After we study the existence of 
the solutionsby using a sequence of approximate solutions using a semi 
discretization of time. Finally we make the estimates and we pass to the limit.  
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1. Problem Statement 
 
We propose to solve a system, called a pseudo Carleman system that models a 
phenomenon in gas kinetics. We will solve it in a bounded open domain in 3IR . 
This work generalizes the work done in [3]. First we will establish result of 
uniqueness. after we establish the existence, by giving approximations of the 
solution, then we will make a priori estimates and we study the convergence. 
Let ] [T,0×Ω=Σ , where ] [ ] [ ] [332211 ,,, bababa ××=Ω , and T is a finite positive 
real number. We propose to find the functions u, v, w  solution of the following 
system: 
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 with the following initial and boundary values : 
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Nota.- Throughout this work the norms without index are those of )(2 ΩL  
 
Theorem 1.1.-  If )()(,, 1 Ω∩Ω∈ ∞LHwvu , and Ω≥ inwvu 0,, 000 . Then the 
problem (1.1),(1.2) admits an unic solution ))()(,,0(,, 1 Ω∩Ω∈ ∞∞ LHTLwvu  and 

Σ≥ inwvu 0,,  
 
Proof.- The proof of this theorem will be done in two steps. 
 
 
2. Uniqueness 
 
Let ),,( 111 wvu  and ),,( 222 wvu  are two solutions of the problem (1.1) -(1.2). We 
pose ;,, 212121 wwwvvvuuu −=−=−=  substituting in (1.1), we obtain: 
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We multiply the first equation of (2.1)  by  u and  we calculate the integral onΩ  

of the found expression,  and according to 0, ≥
∂
∂ u

x
u  and  

( )( ) ( )( ) 02
212121

2
2

2
1 ≥−+=−− uuuuuuuu  because 0≥u  , we obtain : 
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By  hypothesis we have )(,,,,, 212121 Σ∈ ∞Lwwvvuu  then: 
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where );,max(

∞∞∞
= iii wvuM . According to (2.2), we deduce that             

 

                   ( )222 )()(2)()(4)( tvtuMtvtuMtu
dt
d

+≤≤                          (2.3)   

 
By applying the same method to the second and the third equations of the 
system(2.1), we get the inequalities similar to (2.3).By Adding these inequalities 
and applying the lemma of Gronwal [1]; [9], we deduce that:  

0)()()( 222 =++ twtvtu ,    then  212121 ;; wwvvuu ===   
 
 
3 Approximate solutions 
 
To establish the existence of the solution of the problem (1.1) -(1.2), we will use 
the decomposition method exposed in [3],which decomposes the problem (1.1)-
(1.2) into two problems as follows: 
 
Let tk Δ=  is the time step and assume that we know ),,( wvuU =  at the time nk 
denoted nU . We will determine the function 1+nU which is the approximation of 
U at the time (n +1) k , we make this in two-steps.  
In the first step, we decompose the system (1.1) into two problems which the first 
is the following: 
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and the second problem is: 
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After a half discretization of (3.1) and (3.2) compared to t, and assuming that 
{ }nnn wvu ,,  is known, we will determine : { }2/12/12/1 ,, +++ nnn wvu  the approximate 
solution of (3.1). From this solution, which has become known now,  the system 
(3.2) gives us  11; ++ nn vu  and 1+nw . By incrementing the time, we get a sequence 
of approximate solutions which will study the convergence.The half discretization 
of (3.1) is:                                                                  
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Also, the half discretization of (3.2) is:  
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The explicit solution of (3.4) is : 
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We pose 0
0

0
0 , vvuu == , 0

0 ww = . This completely definies the sequence 
{ }nnn wvu ,, .             
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4 Priori estimates 
 

Let 
N
Tk =  , where .INN ∈  We introduce the following functions: 
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k wnkwvnkvunku ===  We need following lemma:                                       
Lemma 4.1.-  The functions ikikikkkk wvuwvu ,,,,,  remain, when  k tend to zero, in 
a bounded domain in ))()(;,0( 1 Ω∩Ω ∞∞ LHTL . 
To prove this lemma, we will use the following result: 
 
Lemma 4.2.- If we pose 
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Proof.- (Of the lemma 4.2). The proof of this lemma is easy, it uses the formula 
(3.5) . For 2,1=i ,  we pose :  
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According to (3.5), we obtain that : 2/112/112/11 ;; ++++++ ≤≤≤ nnnnnn CCBBAA  
To complete the proof of the lemma 4.2 , we must we show that: 

nnnnnn CBACBA ++≤++ +++ 2/12/12/1 . For this it suffices to use the expression 
(3.3): The first equation of the system (3.3) is written as: 
 

( ) ( )[ ]22/122/12/1 +++ ++− nnnn vukuu  
 

Since ( ) ( )[ ] 0
2

2/122/1 ≥+ ++ nn uwk , then 02/1 ≤−+ nn uu  
We use the same method for the second and the third equations of the system (3.3)  
 And by adding these inequalities, we obtain the desired result. According to the 
lemma 4.2, we deduce that the functions 2,1;,,,,, =iwvuwvu ikikikkkk ,  remain 
when  k tend to zero, in a bounded domain in ))(;,0( Ω∞∞ LTL . 
To show that these functions remain bounded in ))(;,0( 1 Ω∞ HTL , we will use the 
following lemma: 
 
Lemma 4.3.-  It exists a constante 01 ≥C  such that :  
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Where zxyxxx === 321 ;;  
 
Proof.- It suffices to etablish the following inequalities : 
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We calculate the derivative of  the first equation of the system (3.4) compared to 
the variable jx , 3,2,1=j ,  we get the following expression: 
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After we calculate the scalar product in ),(2 ΩL of the found formula with
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After, we follow the same method for the other equations of (3.4) we obtain the 
similar inequalities relating to the functions v and w. 
 
To complete the proof of the lemma 4.3, we need the following lemma: 
 
Lemma 4.4.- There is a constante 02 >C such that for i=1,2,3, we have:  
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Proof .- We calculate the derivative of the first equation of (3.3); we obtain: 
 

022 2/12/12/12/12/1 =++− +++++ n
i

nn
i

nn
i

n
i vDkvuDkuuDuD  then 

                         ( )2/12/1
0

2/1 2 +++ ++≤ n
i

n
i

n
i

n
i vDuDkCuDuD                    (4.4) 

 



 

On a pseudo generalized system of Carlemann                                               1725 
 
 
by using the same method for the second and the third equations of (3.3), we 
obtain the similar inequalities relating to the functions v and w 
 To simplifiy the calculations, we pose               
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And 02kC=γ . The equations (4.4); (4.5) becomes:           
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this completes the proof of the lemma 4.4 
 
Now we pursue the proof of the lemma 4.3. For this we pose: 
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Using the formula (4.2), we deduce that: 2/11 ++ ≤ nn ββ .  
 
According to the lemma 4.4, we deduce that 312/13 ,,,0 CC nnn ≤>∃ ++ βββ . This 
completes the proof of  the lemma 4.3. Thus the proof of lemma 4.2 is completed. 
 
 
 
5 Passage to the limit 
 
According to lemma 4.1,  we can extract  the sequences   

2,1,,,,, =iwvuwvu ikikikkkk ,  such that: 

iikiikiikkkk wwvvuuwwvvuu →→→→→→ ,,,,,  weak star in the 
space  ))()(;,0( 1 Ω∩Ω ∞∞ LHTL . But this convergence is not sufficient to take the 
limit in the nonlinear  term,  then we will need another result, it is given by the 
following lemma : 
 

Lemma 5.1.-  When k tend to zero,  the functions 
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Nota.- In this paragraph all the norms are taken in ))(;,0( 2 Ω∞ LTL  
 
Proof.-  Adding the first equations contained in (3.3) and (3.4), we obtain: 
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using the same method for the other equations, we obtain for the expressions  
(3.3) and (3.4), we obyain the equations similar of the equation (5.2) and we apply 
the lemma 4.1. This completes the proof of the lemma 5.1. 
According to the  injection of )(1 ΣH  in )(2 ΣL  is compacte [2] , and according to 
the estimates on kkk wvu ,, , we can suppose that wwvvuu kkk →→→ ,,  strongly 
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Using the lemma 4.1 and the formula (5.1), we deduce that: 
 
               52 kCuu kk ≤−  ;  52 kCvv kk ≤−  ; 52 kCww kk ≤−  

According to the strong convergence of the sequences in )(2 ΣL , we deduce 
that: wwvvuu kkk →→→ 222 ,,  strongly in )(2 ΣL  
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Then we can now to take the limit in the equation (5.3). Thus we see that the 
functions u,v,w satisfies the system (1.1). According to the lemma 5.1, we obtain:  
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