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Abstract

It presents and analyzes the Euler methods for stochastic age-dependent population equa-
tions driven by Poisson random jump measure; Under the Local Lipschitz condition, we prove
that the Euler approximation solution converges to the exact solution in the mean-square
sense. An example is given to illustrates our results.

Mathematics Subject Classifications: 65C30

Keywords: stochastic age-dependent population equations, compensated Poisson random

measure, Euler method, numerical solution, strong convergence

1 Introduction

Population system are often subject to enviroment noise[1,2]. In the present investigation,
the random behavior of the death and influence of external environment process are carefully in-
corporated into the age-dependent population equations to obtain a system of SDEs that model

!This research was supported by a grant from the Eleventh Five-Year Key topics of Jiangsu Institute of
Education (No.Jsjy2009zd03).
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age-dependent population dynamics. Zhang Qi-min et al.[3,4] first showed the existence, unique-
ness and exponential stability for stochastic age-dependent population equations perturbed by
white noise; Mao [5] study the environmental brownian noise suppresses explosions in population
dynamics. As SDEs, stochastic age-dependent population equations cannot be solved explicitly,
we need the approximate numerical solutions to simulate such systems and obtain the corre-
sponding numerical solutions to study their behavior characteristics. Zhang Qi-min et al.[7], Li
Ronghua et al.[8]discussed the convergence of numerical solutions to stochastic age-dependent
population equations. However, in the stochastic age-dependent population system, due to
brusque variations from some rare events, the size of the population systems increases or de-
creases drastically, so the diffusion processes cannot better describe the dynamics of population
density, we need to incorporate the jumps into stochastic age-dependent population equations
to simulate such changes. Li Ronghua et al.[8] studied stochastic age-dependent population
equations with Poisson jump process and given some results about the numerical analysis. In
this paper, we mainly consider stochastic age-dependent population equations driven by Poisson

random jump measures

OP; ~
dP; = [—% —u(t,a)P; + f(t, P)]dt —I—/ h(t,u, P)N(dt, du)
E
We first construct the Euler approximation solution for this system; and we relax the global
lipschitz conditions on the coefficients which imposed in [8], under the Local lipschitz conditions,
we present and prove that the Euler approximation solution converges to the exact solution in

the mean-square sense.

2 Preliminaries and the Euler approximation

Let V = HY[0,4)) = {¢|p € LP(]0, A]), g—;i e LP([0, A]), whereg—;i is generalized partial
derivatives. } V is a Sobolev space. H = LP([0, A]),(P > 2) such that V.— H=H < V'. V'
is the dual space of V. We denote by || -||,| |, and || - ||« the norm in V, H and V', respectively;
by (-,-) the duality product between V, V' and by (-,-) the scalar product in H.

Let (92, F, P) be a complete probability space with a filtration (F;);>o satisfying the usual
conditions ( i.e., it is increasing and right continuous while Fy contains all P-null sets).

Let C = C(]0,T]; H) be the space of all continuous function from [0, 7] into H with sup-norm
lolle = sup [0, L = L2(0.): V) and Lfy = £2(0. 7)),

Consider n-dimensional stochastic pantograph equations with Poisson jump random mea-
sures:

APy =[5 —ult,a) P, + f(t, P))dt + [ h(t, u, PON(dt, du), in Q = (0,T) x (0, A),

P(()? a) - in [07 A]: (21)

POfga)?
P(t,a) = ; B(t,a)P(t,a)da, in [0,T7],
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where T > 0,4 > 0,Q = (0,T) x (0,A4), f : Rt x L¥, — H and h : R x E x LY — H.
where N (dt,du) = N(dt,du) — TI(du)dt is a compensated Poisson random measures in Rt x E
. We refer to [9] for the background on Probability theory and to [10] for stochastic differential
equations.

For systerm (2.1), the discrete implicit Euler approximation on ¢ € {0, h,2h, - -} is given by
the iterative scheme

n+1 ~
P =@ - (2 b u Q) - S QNI [ QDN (B, (22
E

with initial value QY = P(0,a),Q"(t,0) fo B(t,a)Q}da,n > 1. Here,Q} is the approximation
to P(ty,a), the time increment is h = T/N, for some sufficiently large integer N such that
h << 1.

For convenience, We extend our discrete numerical solution to continuous time. First we
N
define the step function: Z; = Z(t,a) = > Qi Ipn,(m+1)n)(t), where I is the indicator function
n=0
for the set G.

Then we define the continuous-time approximation

Qt—QO_/O[aQS-I-U(S a)Zs — f(s,Zs) ds—i—// (s,u, Zs)N(ds, du). (2.3)

In this paper, we impose the following conditions:
i)u(t,a), 3(t,a) are continuous in Q such that

0<wug <u(t,a) <a<oo, 0<p(ta)<pP<oo;

ii) There exists constant v > 0 such that x € V

ox
|%|2 < 7lz|%;

iii)(the Local Lipschitz condition) For every d > 1, there exists a positive constant
K4 > 0, such that for all z,y € C,u € E and ||z||c V ||y|lc < d,

|f(t,z) = f(t,y)* v /E [A(t,u, @) = h(t,u,y)PTI(du) < Ka(llz - ylI3); (2.4)
iv)(the Linear growth condition) there exists K such that for all z,y € C,u € E,

f(t)]? v /E |A(t, u, @) |*TI(du) < K (1 + ||z]|)- (2.5)
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3 Boundness of the exact solutions and numerical solutions

In this section, we show that the exact solution and the implicit approximate solutions has
bounded Pth moments.
Theorem 3.1 Under condition ii), we get

E(sup |R|")<Hy,  E(sup |Qi) < Hy, (3.1)
0<t<T 0<t<T

where H7, Ho are positive constants independent of h.
Proof:By the Holder inequality, it is easy to see from (2.1) that

P
G a

IN

SPHIR|T + | -

t
+y—/ u(s, a)Pyds|”

+y/fsPds\P+y// (s,u, Py)N(ds, du)|"]

500 + 0 [ 10 s s [ R
0 0

+t71 /t ’f(S,Ps)|Pd8+’/t/ h(s, u, P;)N (ds, du)["].
0 0 JE

Hence, for any t; € [0, 7],

IN

P P-1 P, Pt [ OPs
E( sup |BJP) < 5PVE|R +TE/ |
0

t1
0P1E/ |P,|Fds
0<t<ty 0

t ~
+7F= 1E/ (s,P)|Fds + E sup |/ /h(s,u,Ps)N(dsjdu)|Pﬂ3.2)
0 JE

0<t<ty

By condition iv), we compute that

t1 t1
P _ s 2 g S
E/O |f(s, Ps)|” = E/O [1f (s, Ps)[7]2d

t1 P
< E/ K(1+|[Pi[2)5 ds
0
P t1 P
< KE/ (L+ |P[2) 5 ds
t1
P B 1
< K598 E/ (1+ || P)1B)ds
P P t1
< K2227Y T+ [ E sup |P|"ds]. (3.3)
0 0<t<s

We also compute, using the Burkholder-Davis-Gundy inequality,

t1
E sup ]// (s,u, P)N(ds,du)|’ < CPE/ /\hsuP)| H(du)ds)g

0<t<ty



Stochastic age-dependent population equations 1747

IN

CpTg_lE/O1[/E]h(h(s,u,Ps))FH(du)]%ds

IN

P_q f 2.2

CpTz7 E | [K(1+||Plc]Zds

0

P 1.2 h P
< e KE [T |ns

0
t1

< CpD)Z'KET+ [ E(sup |P|P)ds]. (3.4)
0 0<t<s

Substituting (3.3), (3.4)into (3.2), we then derive the following inequalities:

(K£2517F + Cp(21)2 ' K5 T)

E( sup |P|P) < s5P'E|P)|P +T17- 1E/
0<t<ty
t1
][ E(sup |B|")ds
0 0<t<s
t1
E( sup |R|")ds,
0 0<t<s

M\“U

il
2

HueP L+ K222 71 4 Op(2T)2 'K

< 5PTIEIR| Y + TP IE/

where C1, Cy dependent only on K, P and T', but independent of h. By the well-known Gronwall
inequality, we find that

E( sup |P|") < [P E|Py|F + TP 1E/ |Pds+Cl] CeT,

0<t<ty

Similarly, we have E( sup |@Q:F) < 5P 1E|P|F + TF'E f(;f |%|Pd5 + C1]e“2T. hence the
0<t<T
required assertion must hold. 0

4 convergence of the Euler methods

In this section, we derive our strong convergence result, Theorem 4.3 and prove it.
The following lemma shows that the continuous-time approximation remains close to the
step functions in a strong sense.

Lemmad4.1 Under conditions ii) and iv), for each ¢ € [0, 7],
EllQi = Zi] < Cih, (4.1)

whereCdependent only on K, P and T', but independent of h.
Proof:For any t € [0,7], choose a n such that ¢ € [nh, (n + 1)h). Then

Qt—2Zy = Q— Q?
t
= aQsd —/ u(s,a)Zsds

nh Oa

/stds+Ah/ (s,u, Zs)N(ds, du).
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Applying basic inequality |a + b + ¢ + d|* < 4]a|? + 4]b> + 4|¢|? + 4|d|?, Holder inequality and

martingale isometries, we have

E|Q:— Z)* < 4E|/ 8Qsd |2+4E|/ —u(s,a)Zsds|?

+4E|/st ds\2+4E|// (s,u, Zs)N(ds, du)|*

< 4hE/ |%|2ds+4hu(2)E/ | Z,|ds
nh da nh
t t
+4hE |f(s,Zs)2ds+4E/ /|h(s,u,Zs)2H(du)ds
nh nh JE
t t t
< 4h’yE/ |Qs|2ds+4hu(2)E/ |Zs|2ds+(4h+4)E/ K(1+|Zs]|%)ds
nh nh nh
t
< (4hKT +4Kh) + (4hy + 4hud + 4hK +4K) | E sup |Q.|*ds

nh 0<u<s

< (AhKT +AKh) + (4hy + 4hu? + 4hK + AK)R[E sup |Qu|"]?

0<u<s

2 2
< [AKh +4K) + (4hy + Ahud + AWK + AK)(Hy) ]h

The proof is completed. 0

For each d > 0, define the stopping times 74 = inf{t € [0,T] : |P;| > d} and pg = inf{t €
[0,T] :|Q¢| > d}, let 65 = 74 A pg. The following corollary follows directly from Lemma 4.1.
Corollary 4.2 Under conditions ii),iv), for each ¢ € [0,T7],

E[|Qina, — Zina,!] < C1(d)h, (4.2)

whereC' (d)dependent only on K, P and T, but independent of h.
Theorem 4.3 Under conditions ii), iii),and iv), then the numerical solution (2.3) will converge
to the exact solution of Eq.(2.1), i.e

limy_oE[ sup |Q; — P|*] =0, VT > 0.
0<t<T

Proof: Let e; = Q¢ — P;, obviously,

E[ sup |e’] = E[ sup e[ Iryor pysty] + EL sup eI <rorp,<1-
0<t<T 0<t<T 0<t<T

By the young inequality

A™ 1 B" 1 1
AB<5—+—n— VA,B,§ >0 when— + — =1 (m,n > 0)
Om M m n
We obtain
py2, 1 P2
E[ sup |€t| I{Td<T07‘pd<T}] < E[(6 sup |€t| )P(iI{ngTorpdgT}) P ]
0<t<T 0<t<T §P—=2
20 P -2
< SE[suw |e|"]+ ———P(rq < Torpg <T).

P o<t P§F—=2
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Hence

20
E[ sup ]et\2] < F] sup ]et\ I{9d>T}] + E[ sup \et\ ]
0<t<T 0<t< 0<t<T

P—2
—P(1qg < Torpy <T).
P§7P=

+

Now, by Theorem 3.1, we get

P(1q <T) = E[l{7,571}]

IA
&=

QL
|
ey
N
V
~
el

T dP st ar
Similary, we have
Hy
Plpa=T) < —p.
Thus
H{ + H.
Plry < Torpa <T) < Plra <T) + P(pa < T) < =2,
Note
E[sup |e”] < 2P7'E[sup [R|” + sup Q"]
0<t<T 0<t<T 0<t<T
< 2P7UH, + Hy).
Now,
E[ sup ‘et’ I{6d>T}] E[ sup \emadm = P sup ’Pt/\Hd - Qt/\@d’2]'
0<t<T 0<t<T 0<t<T
where

tAOg P
P(tAGa)— QUG < 41—/ i
0

da  Oa
tAOy
” /O (5. Py) — f(5. Z0)]ds]?

tA,
— S. U V S u 2.
4] / /E (5., ) — h(s,u, Z)]N (ds, du)

So, for any 0 < t; < T, by the Doob martingale inequality, we have

8P 8Qs

t1A0g
E[ sup |Pt/\9d QtAedH < 4TE/
0<t<ty

tAOg
+ 4TE/0 |f(s,Ps) — f(s, Zs)|*ds

1749

(4.5)

Q tAOg
*\ds|? + 41/ u(s, a)(Py — Z)ds|?
0

t1A\0g
|d + 4Ty OE/ |Py — Zs|2ds
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tAOg _
+ 4E[ sup | / s,u, Ps) — h(s,u, Zs|N(ds, du)|?]
0<t<ty

tl/\ed aP a t1/N\0g
4TE/ QS| ds + 4Tu OE/ |Ps — Zs|2ds

t/\gd
+ 4TE/ f(s, Ps) — f(s,Zs)|ds

IN

tAOg
+ 16E/ / |h(s,u, Py) — h(s,u, Z)|*T1(du)ds].

Using condition i) and corollary 4.2, we derive that

t1/A0q t1/A\0g
E[ sup |Ping, — Qing,l?] < 4T7E/ (|Ps — Q4]?)ds + 4TugE/ |Py — Z,|*ds
0<t<ty 0 0

t1A\0q t1/A\0g
b ATKE [P Zulfds 1 16KaE [P - 2 s
0 0
t1A0g 9
S 4T7E/ (|Ps/\9d - Qs/\@d‘ )ds
0
t1 A0y
+[ATud +ATK, + 16Kd]E/ (IPs — Qs|* +1Qs — Zs[*)ds
0
t1A0g
S 4T7E/ (|Ps/\9d - Qs/\@d‘Q)ds
0
t1
+ATU + AT+ 16K [ (1P, = Qi + 1@, = Zunay )i
< (ATul +4ATKy+16K4)CyTh

t1

+(4Ty 4 4Tu? + ATK, + 16K,) E sup |Puro, — Quno,|*ds
0 0<u<s

t1

= Mih+ M, E sup |Puns, — Qune,|*ds.
0 0<u<s

By the Gronwall inequality, for any ¢; € [0,7], we find that

E[oi“p |Ping, — Qino,)?] < Mihe?T. (4.6)
t<

Substituting (4.4)-(4.6)into (4.3),

5 _
E[ sup |ef]?] < MlheM2T+F2P[H1+HQ]+ . (4.7)

0<t<T psr=  df
Now, given any € > 0, we can select ¢ sufficiently small for5 9P [H1 + H3] < 5 then choose d so

large for =2 chz;HQ < 5 and finally choose h sufficiently small such that MlheMQT <g5Asa
PsT-2

result

E[ sup |Q¢— Pt|2] <e.
0<t<T

and the proof is complete.
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5 An example

In this section, we present an example which illustrates the Theorem 4.3. Consider the following
stochastic age-dependent population equations driven by Poisson random jump measures

dP;, = [-9% — qls — tP)dt + [ up(P)N(dt,du), in Q = (0,T) x (0,1),

1

P(0,a) = e G- in [0,1], (5.1)

1
1
P(t,a) = A mp(t,a)da in [O,T]
Here N (dt,du) = N(dt,du) — II(du)dt is a compensated Poisson random measures in Rt x Rt
©(+) : R — R are Lipschitz continuous function. We can set this problem in our formulation
by taking H = Lp([ov 1])7V = W()l([ovl])v u(taa) = ﬁ(tva) = ﬁa f(t,P) = —tP, and
1

h(t,u, P) = up(P), P(0,a) =e (-aF.

Clearly, u(t,a) and ((t,a) satisfy condition (i), the operators f and h satisfy conditions iii),
iv). Consequently, the approximate solution will converge to the exact solution of (2.1) for any
(t,a) € (0,7) x (0,1) in the sense of theorem 4.3, provided h is sufficiently small. 5
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