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1. Introduction

The existence, uniqueness and smoothness of solutions of the mixed bound-

ary value problem in domains with conical points have been studied by many

authors [1, 2, 3, 4, 7, 8]. Mixed boundary problem for linear elliptic equa-

tion was studed in [9]. In this paper, we consider the mixed boundary value

problem for semilinear elliptic equations in domains with edges. We will prove

the existence and uniqueness of generalized solutions of the problem in the

space W 1
2,0(Ω, Γ1, Γ2) ∩ Lp(Ω). Furthermore, we will prove the smoothness of
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generalized solutions of the problem in bounded domain Ω of 2 - dimensions

with edges.

The paper is organized as follows, in Sec.2, we introduce the notations and

functional spaces being used. The main results are presented in Sec.3 and

Sec.4.

2. Function spaces and preliminary results

Suppose that Ω is the bounded domain in R
n, n ≥ 2. Its boundary ∂Ω con-

sists of k - smooth manifolds Γ1, Γ2, ..., Γk of (n−1) - dimension. Furthermore,

each Γi intersects with Γi−1 or Γi+1 by manifolds li−1 or li, respectively. With-

out loss of generality we may assume that ∂Ω consists of two manifolds, Γ1

and Γ2, intersected by manifold l0. For the any point P ∈ l0 there are defined

two half-spaces Γ1(P ), Γ2(P ) of (n − 1) - dimension tangential to ∂Ω and the

2- dimensional plane π(P ) normal to l0 in P . We denote by ν(P ) the angle in

π(P ) bounded by the rays Γ1(P )∩π(P ), Γ2(P )∩π(P ), and by β(P ) the value

of this angle.

In this paper we use following functional spaces:

• W k(Ω) - the space consisting of all functions u(x) which have generalized

derivatives
∂su

∂xs
, 0 ≤ s ≤ k, satisfying

‖u‖W k(Ω) =

⎛
⎝∫

Ω

k∑
s=0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx

⎞
⎠

1
2

< +∞.

• W k
α (Ω) - the space consisting of all functions u(x) which have generalized

derivatives
∂su

∂xs
, 0 ≤ s ≤ k, satisfying

‖u‖W k
α(Ω) =

⎛
⎝ k∑

s=0

∫
Ω

rα

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx

⎞
⎠

1
2

< +∞,

where r = r(x) is an infinitely differentiable positive function.

• W̊ k
α (Ω) - the space consisting of all functions u(x) which have generalized

derivatives
∂su

∂xs
, 0 ≤ s ≤ k, with the norm

‖u‖W̊ k
α(Ω) =

⎛
⎝ k∑

s=0

∫
Ω

rα+2(s−k)

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx

⎞
⎠

1
2

< +∞.
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• W 1
2,0(Ω) is the closure in W 1(Ω) of set consisting of all infinitely differen-

tiable functions in Ω which vanish near ∂Ω.

• W 1
2,0(Ω, Γ1, Γ2) is the closure in W 1

2,0(Ω) of set consisting of all infinitely

differentiable functions in Ω which vanish near Γ1.

• E = W 1
2,0(Ω, Γ1, Γ2) ∩ Lp(Ω) is the space consisting of all functions u(x)

satisfying

‖u‖E = ‖u‖W 1
2,0(Ω,Γ1,Γ2) + ‖u‖Lp(Ω).

Let us consider the partial differential operator

Lu =

n∑
i,j=1

(aijuxi
)xj

+

n∑
i=1

aiuxi
+ au,

where aij , ai, a are infinitely differentiable functions in Ω and satisfy

aij = aji, i, j = 1, 2, ..., n,(1)

ν|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ ν−1|ξ|2, ∀ξ ∈ R
n, |ξ| 	= 0,

n∑
i=1

|ai|2 ≤ M1,(2)

− M3 ≤ a ≤ −M2, M1, M2, M3 > 0.(3)

We consider the operator

Φ : E −→ E∗

where

Φ(u) = −Lu + |u|ρu + f,

and

(L(ω), ω) = −
∫
Ω

[
n∑

i,j=1

aijωxi
ωxj

−
n∑

i=1

aiωxi
ω − aω2

]
dx,(4)

where ω = u − v, u, v ∈ E.

Lemma 2.1. For every u, v in E, we have following inequality

(Φ(u) − Φ(v), u − v) ≤ 0.

Proof. We have

(Φ(u) − Φ(v), u − v) = −(L(u − v), u − v) + (|u|ρu − |v|ρv, u − v).(5)
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By using Cauchy’s inequality and conditions (2),(3), we obtain∫
Ω

n∑
i=1

aiωxi
ωdx ≤ ε

2
‖ωx‖2

L2(Ω) +
M1

2ε
‖ω‖2

L2(Ω),(6)

∫
Ω

aω2dx ≤ −M2‖ω‖2
L2(Ω).(7)

From (6)-(7), we have

−(L(ω), ω) ≥ ν‖ωx‖2
L2(Ω) −

ε

2
‖ωx‖2

L2(Ω) −
M1

2ε
‖ω‖2

L2(Ω) + M2‖ω‖2
L2(Ω).(8)

From (8) choose ε = ν, we get

−(L(ω), ω) ≥ ν

2
‖ωx‖2

L2(Ω) +

(
M2 − M1

2ν

)
‖ω‖2

L2(Ω) ≥ C1‖ω‖W 1
2,0(Ω,Γ1,Γ2) ≥ 0,

(9)

where C1 = min

(
ν

2
, M2 − M1

2ν

)
≥ 0, M2 − M1

2ν
≥ 0 when M2 > 0 and is large

enough.

We consider

(|u|ρu − |v|ρv)(u − v) = |u|ρ+2 + |v|ρ+2 − (|u|ρuv + |v|ρuv)

≥ |u|ρ+2 + |v|ρ+2 − (|u|ρ+1|v| + |v|ρ+1|u|)
= (|u|ρ+1 − |v|ρ+1)(|u| − |v|)
≥ 0,

for ∀u, v ∈ E. Hence

((|u|ρu − |v|ρv), (u − v)) =

∫
Ω

(|u|ρu − |v|ρv)(u − v)dx ≥ 0.(10)

From (5)-(9)-(10), we have

(Φ(u) − Φ(v), u − v) ≥ 0.

The proof is complete.

We recall two basic lemmas.

Lemma 2.2. [6] Leting uμ −→ u a.e. in L2(Ω), uμ is uniformly bounded in

Lp(Ω) for p = ρ + 2, ρ > 0. Then |uμ|ρuμ → |u|ρu weakly in Lq(Ω), where
1

p
+

1

q
= 1.
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Puting G(ω) =
∫
Ω

(|u|ρu − |v|ρv)ωdx, where ω = u − v, we have following

lemma:

Lemma 2.3. [5] Leting u, v ∈ E, ρ ≤ 2
n−2

(in case n = 2, ρ is arbitrarily

finite), then G(ω) satisfying

|G(ω)| ≤ C2‖ω‖2
L2(Ω), C2 = const > 0.

Lemmas 2.1, 2.2, 2.3 are basic tolls for proving the existence and uniqueness

of solutions of the problem under consideration.

3. Existence and uniqueness of solution

We consider the following problem

Lu − |u|ρu = f in Ω,(11)

u
∣∣
Γ1

= 0,(12)

∂u

∂n

∣∣∣∣
Γ2

= 0,(13)

where
∂u

∂n
=

n∑
i,j=1

aij
∂u

∂xi

cos(−→n , xj),
−→n is the outer normal ∂Ω.

Definition 3.1. A function u(x) is called a generalized solution of the problem

(11)-(13) in the space E if it satisfies

∫
Ω

[
n∑

i,j=1

aijuxi
ηxj

−
n∑

i=1

aiuxi
η − auη

]
dx +

∫
Ω

|u|ρuηdx = −
∫
Ω

fηdx,(14)

for all test function η ∈ E, p = ρ + 2.

First, we prove the existence of generalized solution of the problem (11)-(13).

Theorem 3.1. If f ∈ L2(Ω) then the problem (11)-(13) has a generalized

solution u(x) in the space E, where p = ρ + 2, ρ ≤ 2
n−2

(if n = 2 then ρ is

arbitrary finite).

Proof. Consider approximate solution uN(x) following the form

uN(x) =
N∑

k=1

CN
k ϕk(x),
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where {ϕk(x)}∞k=1 is basic of E which is orthonormal in L2(Ω). We get uN

from solving the problem

(
n∑

i,j=1

aiju
N
xi

, ϕkxj

)
−
(

n∑
i=1

aiu
N
xi

, ϕk

)
− (auN , ϕk) + (|uN |ρuN , ϕk) = −(f, ϕk),

(15)

for k = 1, 2, ..., N .

uN

∣∣∣∣
Γ1

= 0,(16)

∂uN

∂n

∣∣∣∣
Γ2

= 0.(17)

The f is continuous, using the Peano theorem we get the local existence of uN .

By multiplying both sides (15) with CN
k , then taking the sum with respect

to k from 1 to N , we obtain

∫
Ω

n∑
i,j=1

aiju
N
xi

uN
xj

dx −
∫
Ω

n∑
i=1

aiu
N
xi

uNdx −
∫
Ω

a|uN |2dx +

∫
Ω

|uN |pdx = −
∫
Ω

fuNdx.

(18)

Using hypotheses (1)-(3) and Cauchy’s inequality from (6)-(7) we get

∫
Ω

n∑
i,j=1

aiju
N
xi

uN
xj

dx ≥ ν‖uN
x ‖2

L2(Ω),(19)

∫
Ω

n∑
i=1

aiu
N
xi

uNdx ≤ ε

2
‖uN‖2

L2(Ω) +
M1

2ε
‖uN‖2

L2(Ω), ∀ε > 0,(20)

∫
Ω

a|uN |2dx ≤ −M2‖uN‖2
L2(Ω),(21)

∫
Ω

fuNdx ≤ 1

2
‖f‖2

L2(Ω) +
1

2
‖uN‖2

L2(Ω).(22)

Choose ε = ν. From (18)-(22) we have

ν

2
‖uN

x ‖2
L2(Ω) + ‖uN‖p

Lp(Ω) ≤
(

M1

2ν
− M2 +

1

2

)
‖uN‖2

L2(Ω) +
1

2
‖f‖2

L2(Ω).(23)
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Choose M2 > 0 large enough such that δ = M1

2ν
− M2 +

1

2
< 0 and put

C3 = min(ν
2
,−δ) > 0, we obtain

C3‖uN‖2
W 1

2,0(Ω,Γ1,Γ2)
+ ‖uN‖p

Lp(Ω) ≤
1

2
‖f‖2

L2(Ω).(24)

Thank to (24), we have

‖uN‖W 1
2,0(Ω,Γ1,Γ2) ≤ C4, ‖uN‖Lp(Ω) ≤ C4, C4 = const > 0,(25)

for ∀N .

By the Sobolev’s imbedding theorem W 1
2,0(Ω, Γ1, Γ2) ↪→ L2(Ω), since {uN}

is uniformly bounded in L2(Ω), we can choose a subsequence {uμ} → u(x)

weakly a.e. in L2(Ω)). We will prove that u(x) is a solution of the problem

(11)-(13).

By Lemma 2.2, it is sufficient to prove that |uμ|ρuμ → |u|pu weakly in Lq(Ω).

Put M = {η =
N∑

k=1

dkϕk(x)| dk arbitrary}. The space M is a subspace of

the space E.

Multiplying both sides of (15) by dk, then taking the sum with respect to k

from 1 to N , we obtain

∫
Ω

n∑
i,j=1

aijuμxi
ηxj

dx −
∫
Ω

n∑
i=1

aiuμxi
ηdx −

∫
Ω

auμηdx +

∫
Ω

|uμ|ρuμηdx = −
∫
Ω

fηdx.

(26)

For each η ∈ M, taking limits μ → ∞, equality (26) implies

∫
Ω

n∑
i,j=1

aijuxi
ηxj

dx −
∫
Ω

n∑
i=1

aiuxi
ηdx −

∫
Ω

auηdx +

∫
Ω

|u|ρuηdx = −
∫
Ω

fηdx.

(27)

Morever, we have

uμ

∣∣∣∣
Γ1

→ u
∣∣
Γ1

= 0,

∂uμ

∂n

∣∣∣∣
Γ2

→ ∂u

∂n

∣∣∣∣
Γ2

= 0 as μ → ∞.

The proof is complete.

Theorem 3.2. If f ∈ L2(Ω), ρ ≤ 2

n − 2
(if n = 2, ρ is arbitrary finite), then

the problem (11)-(13) has at most one generalized solutions in W 1
2,0(Ω, Γ1, Γ2).



1760 Nguyen Dinh Binh

Proof. Suppose the problem (11)-(13) has two generalized solutions u, v in

W 1
2,0(Ω, Γ1, Γ2). If ω = u − v, we have

∫
Ω

n∑
i,j=1

aijωxi
ηxj

dx −
∫
Ω

n∑
i=1

aiωxi
ηdx −

∫
Ω

aωηdx = −
∫
Ω

(|u|ρu − |v|ρv)ηdx,

(28)

for ∀η ∈ W 1
2,0(Ω, Γ1, Γ2).

Taking η = ω, (28) implies that∫
Ω

n∑
i,j=1

aijωxi
ωxj

dx −
∫
Ω

n∑
i=1

aiωxi
ωdx −

∫
Ω

aω2dx = −
∫
Ω

(|u|ρu − |v|ρv)ωdx.

By using Cauchy-Bunhiacopski’s inequality and Lemma 2.3 we obtain

ν‖ωx‖2
L2(Ω) ≤

ε

2
‖ωx‖2

L2(Ω) +
M1

2ε
‖ω‖2

L2(Ω) − M2‖ω‖2
L2(Ω) + |G(ω)|.

Taking ε = ν, we have

ν

2
‖ωx‖2

L2(Ω) ≤
(M1

2ν
− M2 + C2

)‖ω‖2
L2(Ω).(29)

From (29), choose M2 > 0 large enough such that C5 =
M1

2ν
− M2 + C2 < 0

and put C6 = min
(ν

2
,−C5

)
> 0, we obtain

C6‖ω‖2
W 1

2,0(Ω,Γ1,Γ2)
≤ 0.(30)

From (30) we have

u ≡ v in W 1
2,0(Ω, Γ1, Γ2).

This implies the uniqueness of the solution.

4. Some further results in domain of 2-dimensions

In this section, we consider smoothness of the generalized solutions in bounded

domain Ω ∈ R
2 with edges. By mathematical transformation Ω equals Ω0 and

has the property

0 < r =
√

x2
1 + x2

2 < +∞, 0 < arctan
x2

x1
≤ β = const.

Hence, boundary ∂Ω0 consist of

Γ0
1 = {x | arctan

x2

x1

= 0}, Γ0
2 = {x | arctan

x2

x1

= β}.
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Consider the problem of Ω0 for equation (11) and conditions:

u
∣∣
Γ0

1
= 0,(31)

∂u

∂n

∣∣
Γ0

2
= 0.(32)

Using the arguments as in the proof of Lemma 2.1 [8], we obtain the following

lemma.

Lemma 4.1. Let u ∈ W 1
2,0(Ω

0, Γ0
1, Γ

0
2) and

∫
Ω0

rαgrad2udx < +∞, then

∫
Ω0

rα−2|u|2dx ≤ C7

∫
Ω0

rαgrad2udx,(33)

where r =
√

x2
1 + x2

2, α ∈ R, C7 = const > 0.

From Lemma 4.1, we get the following result:

If u ∈ W 1
2,0(Ω

0, Γ0
1, Γ

0
2) and u = 0 when r > d > 0 then there exists the

Friedrich’s inequality ∫
Ω0

u2dx ≤ d2

∫
Ω0

grad2udx.(34)

Theorem 4.1. Leting u(x) for a generalized solution of problem (11)-(31)-

(32), and f ∈ L2(Ω0); u = 0 when r > d > 0 (d - small enough), we have∫
Ω0

grad2udx +

∫
Ω0

u2

r2
dx ≤

∫
Ω0

|f |2dx.(35)

Proof. Leting u(x) for a generalized solution of problem (11)-(31)-(32), we have∫
Ω0

[
n∑

i,j=1

aijuxi
ηxj

−
n∑

i=1

aiuxi
η − auη

]
dx +

∫
Ω0

|u|ρuηdx = −
∫
Ω0

fηdx,(36)

for ∀η ∈ W 1
2,0(Ω

0, Γ0
1, Γ

0
2).

Taking η = u, we obtain∫
Ω0

[
n∑

i,j=1

aijuxi
uxj

−
n∑

i=1

aiuxi
u − au2

]
dx +

∫
Ω0

|u|pdx = −
∫
Ω0

fudx.

By using Cauchy-Bunhiacopski’s inequality and (34), we get

ν

∫
Ω0

grad2udx +

∫
Ω0

|u|pdx ≤ ν

2

∫
Ω0

grad2udx +

[
M1

2ν
− M2 +

1

2

] ∫
Ω0

u2dx +
1

2

∫
Ω0

|f 2|dx.

(37)
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From (34),(37) with d > 0 sufficiently small such that δ =
ν

2
−d2

[
M1

2ν
− M2 +

1

2

]
>

0, we get

δ

∫
Ω0

grad2udx ≤ 1

2

∫
Ω0

|f |2dx.(38)

and then ∫
Ω0

grad2udx ≤ C8

∫
Ω0

|f |2dx,(39)

where C8 > 0 depends on δ.

By Lemma 4.1 for α = 0 we have∫
Ω0

u2

r2
≤ C9

∫
Ω0

grad2udx.(40)

From (39)-(40), the theorem is completely proved.

Lemma 4.2. Leting

i) u ∈ W k+m
0 (Ω0); u = 0 when r > d > 0 (d small enough);

ii) α ≥ 2k.

Then

u ∈ W̊ k+m
α+2m(Ω0).

Proof. Let u ∈ W k+m
0 (Ω0), we have

k+m∑
s=0

∫
Ω0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx < +∞.

With α ≥ 2k, 0 ≤ s ≤ k + m we get∫
Ω0

rα+2(s−k)

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx ≤
∫
Ω0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx < +∞.(41)

Hence, (41) implies∫
Ω0

rα+2m+2(s−k−m)

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx ≤
∫
Ω0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx < +∞.(42)

From (42) taking the sum with respect to s from 0 to k + m we obtain

u ∈ W̊ k+m
α+2m(Ω0).

The proof is complete.
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Lemma 4.3. Suppose the conditions of Lemma 4.2 hold, and let k + m >

1, ρ ∈ N, ρ ≥ 1 or ρ ∈ R, ρ ≥ k + m. Then

|u|ρ ∈ W̊ k+m
α+2m(Ω0).(43)

Proof. Considering cases

1) Case ρ = 1, 0 ≤ s ≤ k + m, we have∫
Ω0

∣∣∣∣∂s|u|
∂xs

∣∣∣∣
2

dx =

∫
Ω0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx < +∞.(44)

From (44) we have
∂s|u|
∂xs

∈ L2(Ω0) and |u| ∈ W k+m
0 (Ω0).

By Lemma 4.2, it follows that |u| ∈ W̊ k+m
α+2m(Ω0).

2) Case ρ > 1, 0 ≤ s ≤ k + m, we have

∂|u|ρ
∂x

= ρ|u|ρ−1∂|u|
∂x

.(45)

From (45), we see that in terms of expansion of
∂s|u|ρ
∂xs

and its coefficients,

there forms:

1) |u|ρ−1∂s|u|
∂xs

,

2) |u|γ ∂s1 |u|
∂xs1

...
∂sl |u|
∂xsl

,

where 0 ≤ γ < ρ − 1,
l∑

i=1

si = s; 1 ≤ si < s, 1 ≤ i ≤ l.

Form 1: u ∈ W k+m(Ω0), Ω0 ⊂ R
2 with k + m > 1, then the Sobolev’s

imbedding theorem implies that

W k+m(Ω0) ↪→ C(Ω0).

with continuous injection. Hence with u ∈ C(Ω
0
), |u|γ continuous on Ω

0
and

|u|γ bounded on Ω0, ∀γ ≥ 0,we get |u|ρ−1 bounded on Ω0.

By using the result in case ρ = 1, we have∫
Ω0

∣∣∣∣∂su

∂xs

∣∣∣∣
2

dx < +∞.

Hence

|u|ρ−1

∣∣∣∣∂s|u|
∂xs

∣∣∣∣ ∈ L2(Ω0).
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Form 2: Repeating arguments which are analogous to Form 1, we have |u|γ
bounded in Ω0, 0 ≤ γ < ρ − 1, u ∈ W k+m

0 (Ω0), hence
∂si |u|
∂xsi

∈ W̊ 1(Ω) for

0 ≤ si < k + m.

By using Sobolev’s imbedding theorem, we have

W̊ 1(Ω0) ↪→ Lp(Ω0), ∀p ≥ 1,

hence
∂si |u|
∂xsi

∈ L2(Ω0), 1 ≤ i ≤ l.

By using Holdel’s inequality we obtain

∫
Ω0

∣∣∣∣|u|γ ∂s1 |u|
∂xs1

· · · ∂
sl|u|
∂xsl

∣∣∣∣
2

dx ≤ C10

∥∥∥∥∂s1 |u|
∂xs1

∥∥∥∥
2

L2p1 (Ω0)

· · ·
∥∥∥∥∂sl |u|

∂xsl

∥∥∥∥
2

L2pl (Ω0)

< +∞,

(46)

where
1

p1

+
1

p2

+ · · ·+ 1

pl

= 1, C10 = const > 0.

From (46), we see that |u|γ ∂s1 |u|
∂xs1

· · · ∂
sl |u|
∂xsl

∈ L2(Ω0).

Hence
∂s|u|ρ
∂xs

∈ L2(Ω0) when 0 ≤ s ≤ k + m,|u|ρ ∈ W k+m
0 (Ω0) and |u|ρu ∈

W̊ k+m
0 .

Moreover, by Lemma 4.2, it follows that

|u|ρu ∈ W̊ k+m
α+2m(Ω0).

This completes the proof.

From Lemma 4.2, 4.3 and using the arguments as in the proof of Theorem 2.2

[8], we obtain the following lemma.

Lemma 4.4. Let

i) f ∈ W̊ k+m
α+2m(Ω0);

ii) u ∈ W k+m
0 (Ω0) ∩ W̊ 0

α−2k−4(Ω
0) is a generalized solution of problem (11)-

(31)-(32) , u = 0 when r > d > 0 (d sufficiently small);

iii) α ≥ 2k, k + m > 1;

iv) ρ ∈ N, ρ ≥ 1 or ρ ∈ R, ρ ≥ k + m − 1.

Then

|u|ρu ∈ W̊ k+m+2
α+2m (Ω0).
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Remark 1: If u ∈ W̊ k
α (Ω0), 0 ≤ α ≤ 2, k ≥ 1; u = 0 for r > d (d > 0 -

sufficiently small), then u ∈ W k−1(Ω0).

Remark 2: If f ∈ W̊ 0
0 (Ω0) = L2(Ω0); u = 0 when r > d (d > 0 - sufficiently

small),
π

ω
> 1, then u ∈ W̊ 2

0 (Ω0).

Remark 3: If f ∈ L2(Ω0), u ∈ W 1
2,0(Ω

0, Γ0
1, Γ

0
2) is a generalized solution of

problem (11)-(31)-(32), then |u|ρu ∈ L2(Ω0). Hence F = |u|ρu + f ∈ L2(Ω)

and this implies F ∈ W̊ 0
α(Ω0). In case k = 0 we get u ∈ W̊ 2

α(Ω0).

Theorem 4.2. Let

i) f ∈ W̊ k
α(Ω0) ∩ L2(Ω0), 0 ≤ α ≤ 2, k ≥ 1;

ii) u ∈ W 1
2,0(Ω

0, Γ0
1, Γ

0
2) is the generalized solution of problem (11)-(31)-(32),

u = 0 for r > d > 0 (d sufficiently small);

iii)
π

ω
> k + 2 − α + 2

2
;

iv) ρ ∈ N, ρ ≥ 1 or ρ ∈ R, ρ ≥ k − 1.

Then

u ∈ W̊ k+2
α (Ω0).

Proof. We will prove the theorem by the inductive method with respect to k.

Let k = 1. Since f ∈ W̊ 1
α(Ω0, hence f ∈ W̊ 0

α(Ω0) and by Remark 2 we have

u ∈ W̊ 2
α(Ω0). We will prove |u|ρu ∈ W̊ 1

α(Ω0).

a) First we prove that |u|ρ ∈ W̊ 1
α(Ω0), i.e.∫

Ω0

rα−2
∣∣|u|ρ∣∣2dx +

∫
Ω0

rα
∣∣∣∂|u|ρ

∂x

∣∣∣2dx

=

∫
Ω0

rα−2|u|2ρdx +

∫
Ω0

rα(ρ|u|ρ−1)2
∣∣∣∂|u|

∂x

∣∣∣2dx < +∞,(47)

From Remark 2, f ∈ L2(Ω0) ⇒ u ∈ W 2(Ω0). By the Sobolev’s imbedding

theorem, we have

W 2(Ω0) ↪→ C(Ω̄0).

Hence u ∈ C(Ω̄0) and |u|S, (s ≥ 0) continousness on Ω̄0,|u|S bounded on Ω̄0.

Because |u|2ρ−2 is bounded and u ∈ W̊ 2
α(Ω0), hence u ∈ W̊ 1

α(Ω0) and we

have ∫
Ω0

rα−2|u|2ρdx =

∫
Ω0

rα−2|u|2ρ−2|u|2dx ≤ C11

∫
Ω0

rα−2|u|2dx < +∞,(48)
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Ω0

rα(ρ|u|ρ−1)2
∣∣∣∂|u|

∂x

∣∣∣2dx ≤ C12

∫
Ω0

rα
∣∣∣∂|u|

∂x

∣∣∣2dx < +∞,(49)

From (48),(49), we have |u|ρ ∈ W̊ 1
α(Ω0)

b) To prove |u|ρu ∈ W̊ 1
α(Ω0). Using the argument as in section a) we have∫

Ω0

rα−2
∣∣|u|ρu∣∣2dx +

∫
Ω0

rα
∣∣∣∂|u|ρu

∂x

∣∣∣2dx

=

∫
Ω0

rα−2|u|2(ρ+1)dx +

∫
Ω0

rα
∣∣∣∂|u|ρ+1

∂x

∣∣∣2dx < +∞,(50)

hence |u|ρu ∈ W̊ 1
α(Ω0) and F = |u|ρu + f ∈ W̊ 1

α(Ω0). By Lemma 4.4, we get

u ∈ W̊ 3
α(Ω0).

Now, let the theorem assertion holds up to k−1 ≥ 1, i.e. if f ∈ W̊ k−1
α (Ω0),

π

ω
>

k+1−α + 2

2
then u ∈ W̊ k+1

α (Ω0). We need to prove this holds up to k, (k ≥ 2).

We have f ∈ W̊ k
α(Ω0),

π

ω
> k +2− α + 2

2
, k ≥ 2 and by inductive hypothesis

we have u ∈ W̊ k+1
α (Ω0). By Remark 1, it follows that u ∈ W k(Ω0), (k ≥ 2).

We see that in terms of the expansion of
∂s|u|ρ
∂xs

and its coefficients, there

forms

1) |u|ρ−1∂s|u|
∂xs

,

2) |u|γ ∂s1 |u|
∂xs1

...
∂sl |u|
∂xsl

,

where 0 ≤ γ < ρ − 1,
l∑

i=1

si = s; 1 ≤ si < s, 1 ≤ i ≤ l, 0 ≤ s ≤ k.

1) Case s = k. We consider form 1∫
Ω0

rα(|u|ρ−1)2
∣∣∣∂k|u|

∂xk

∣∣∣2dx ≤ C13

∫
Ω0

rα
∣∣∣∂k|u|

∂xk

∣∣∣2dx < +∞,(51)

where C13 = const > 0, hence u ∈ W̊ k
α(Ω0).

For form 2, we have

M =

∫
Ω0

rα
∣∣∣|u|γ ∂k1 |u|

∂xk1
...

∂kl |u|
∂xkl

∣∣∣2dx

=

∫
Ω0

rα
∣∣∣∂k1 |u|

∂xk1

∣∣∣2∣∣∣|u|γ ∂k2 |u|
∂xk2

...
∂kl |u|
∂xkl

∣∣∣2dx < +∞,(52)
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Without loss of generality we may assume that k1 = max
1≤i≤l

{ki}.
If l = k then k1 = k2 = ... = kl = 1. Using Holde’s inequality and bounded-

ness of |u|r on Ω0, we get∫
Ω0

|u|2r|ux|2...|ux|2dx ≤ C14

∫
Ω0

|ux|2...|ux|2dx

≤ C14‖ux‖2
W 1(Ω0)...‖ux‖2

W 1(Ω0) < +∞,(53)

where C14 = const > 0. Because u ∈ W k(Ω0), (k ≥ 2), hence ux ∈ W 1(Ω0).

From 52, 53, we have M < +∞.

If l < k, then we can let max
1≤i≤l

{ki} = ki1 = ... = kip

*Leting p = 1, we choose k1 = ki1, then k1 > ki, 2 ≤ i ≤ l. For k = 2, we

have result as in Section a); for k ≥ 3, we have k > k1 and k−ki ≥ 2, 2 ≤ i ≤ l.

*Leting 1 < p ≤ l and k ≥ 2 we get ki ≤ k
2
, 1 ≤ i ≤ l, hence k − ki ≥ 2.

For all cases, we obtain k − ki ≥ 2, 2 ≤ i ≤ l, hence
∂ki |u|
∂xki

∈ W k−ki(Ω0).

Because k − ki ≥ 2 hence W k−ki(Ω0) ↪→ C(Ω̄0), 2 ≤ i ≤ l with continuous

injection, it follows that
∂ki |u|
∂xki

, 2 ≤ i ≤ l is bounded on Ω0.

Moreover, u ∈ W̊ k+1
α (Ω0) ⇒ W̊ l

α(Ω0) for all l ≤ k + 1. From (52), we have

M ≤ C15

∫
Ω0

rα
∣∣∣∂k1 |u|

∂xk1

∣∣∣2dx ≤ C15

∫
Ω0

rα
∣∣∣∂k1u

∂xk1

∣∣∣2dx < +∞,(54)

Hence ∫
Ω0

rα
∣∣∣∂k|u|p

∂xk

∣∣∣2dx < +∞.(55)

2) Case s < k. Using the argument as in case s = k, we can prove that

|u|ρ ∈ W̊ k
α(Ω0). This is implied

|u|ρu ∈ W̊ k
α (Ω0).

By Lemma 4.4, we have u ∈ W̊ k+2
α (Ω0). The proof is completed.
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