Applied Mathematical Sciences, Vol. 4, 2010, no. 36, 1785-1796

A Nonlinear Elasticity Problem Governed by Lamé System

M. Meflah
Univ. K. Merbah de Ouargla, Algeria
meflah@ymail.com
\section*{B. Merouani}
Univ. F. Abbas de Sétif, Algeria

Abstract

In this work we study a nonlinear problem equation governed by the system of Lamé, is similar example was the partial differential equations, which operates in relativistic quantum mechanics system. We look for the existence and uniqueness of a function $u=u(x, t), x \in \Omega$, $t \in(0, T)$ solution of the problem.

1 Notation

Let Ω an open bounded domain of $I R^{n}$, with regular boundary Γ. We denote by $u=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ a vector and T a scalar function on $\left.Q_{\tau}=\Omega \times\right] 0, \tau[$ where τ is a finite real number. λ, μ are the Lamé coefficients with $\lambda \geq 0, \mu>0$, $\gamma>0$ is a constant. Let $k>0$ be the coefficient of the termic conductivity.Our problem is to study a similar example was the partial differential equations, which operates in relativistic quantum mechanics. It means a Ω an open bounded domain of \mathbb{R}^{n}, with regular boundary Γ. We denot by Q the cylinder $\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}: Q=\Omega \times(0, T)$, with boundary Σ. L designe Lamé system define by $\mu \Delta+(\lambda+\mu) \nabla$ div; λ and μ are constants Lamé with $\lambda+\mu \geq 0$. $\left(u_{0}, u_{1}, f\right)$ functions, $\rho>0$. We look for the existence and uniqueness of a function $u=$ $u(x, t), x \in \Omega, t \in(0, T)$ solution of the problem $(1 ; 2 ; 3 ; 4)$.

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-L u+|u|^{\rho} u=f, x \in \Omega, t \in(0, T) \tag{1}\\
u=0 \text { on } \Sigma \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \Omega \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, 0)=u_{1}(x), x \in \Omega \tag{4}
\end{equation*}
$$

2 Existence and uniqueness of the solution

2.1 Existence of the solution

The techniques we use are those of the method of compactness

Theorem 1 Assume that Ω is a bounded open, are given f, u_{0}, u_{1}, with

$$
\begin{gather*}
f \in L^{2}(Q), \tag{5}\\
u_{0} \in H_{0}^{1}(\Omega) \cap L^{p}(\Omega), p=\rho+2 . \tag{6}\\
u_{1} \in L^{2}(\Omega) . \tag{7}
\end{gather*}
$$

Then there exists a function u satisfying:

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right) \tag{8}\\
\frac{\partial u}{\partial t}(x, 0) \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{9}\\
\frac{\partial^{2} u}{\partial t^{2}}-L u+|u|^{\rho} u=f \text { in } Q \tag{10}\\
u(0)=u_{0}(x), x \in \Omega \tag{11}\\
\frac{\partial u}{\partial t}(0)=u_{1}(x), x \in \Omega \tag{12}
\end{gather*}
$$

2.2 First step: looking for approached solutions

We introduce a sequence functions w_{1}, \ldots, w_{m},. having the following properties:

$$
\left\{\begin{array}{c}
w_{i} \in H_{0}^{1}(\Omega) \cap L^{p}(\Omega) \quad \forall i ; \tag{13}\\
\forall m, w_{1}, \ldots, w_{m} \text { are linearly independent } \\
\text { combinations of linear finite } w_{i} \text { are dense in } \\
H_{0}^{1}(\Omega) \cap L^{p}(\Omega)
\end{array}\right.
$$

We look for $u_{m}=u_{m}(t)$ (approximate solution) of the problem as:

$$
\begin{equation*}
u_{m}(t)=\sum_{i=1}^{i=m} g_{i m}(t) w_{i} . \tag{14}
\end{equation*}
$$

We determine the functions $g_{i m}$ with the conditions

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}(t), w_{j}\right)+a\left(u_{m}, w_{j}\right)+\left(\left|u_{m}(t)\right|^{\rho} u_{m}(t), w_{j}\right)=\left(f(t), w_{j}\right), 1 \leq j \leq m \tag{15}
\end{equation*}
$$

As a is a bilinear form defined as follows:

$$
\begin{equation*}
a(u, v)=\lambda \sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x+(\lambda+\mu) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \tag{16}
\end{equation*}
$$

The system (15) of ordinary differential equations nonlinear be supplemented by initial conditions:

$$
\begin{gather*}
u_{m}(0)=u_{0 m}, u_{0 m}=\sum_{i=1}^{m} \alpha_{i m} w_{i} \underset{m \rightarrow \infty}{\rightarrow} u_{0} \text { in } H_{0}^{1}(\Omega) \cap L^{p}(\Omega), \tag{17}\\
u_{m}^{\prime}(0)=u_{1 m}, u_{1 m}=\sum_{i=1}^{m} \beta_{i m} w_{i} \underset{m \rightarrow \infty}{\rightarrow} u_{1} \text { in } L^{2}(\Omega) . \tag{18}
\end{gather*}
$$

Through the linear independence of w_{1}, \ldots, w_{m}, , we have $\operatorname{det}\left(w_{i}, w_{j}\right) \neq 0$, ie the system composed of (15), (17) and (18) admits a solution defined on $\left[0, t_{m}\right]$. The a priori estimates which follow show that $t_{m}=T$.

2.3 Second step: a priori estimates.

We multiply equation (15) index j by $g_{j m}^{\prime}(t)$ was:

$$
\left(u_{m}^{\prime \prime}(t), u_{m}^{\prime}(t)\right)+a\left(u_{m}(t), u_{m}^{\prime}(t)\right)+\left(\left|u_{m}(t)\right|^{\rho} u_{m}(t), u_{m}^{\prime}(t)\right)
$$

$$
\begin{equation*}
=\left(f(t), u_{m}^{\prime}(t)\right) \tag{19}
\end{equation*}
$$

But, $\left|u_{m}(t)\right|^{\rho} u_{m}(t) \in L^{p^{\prime}}(\Omega)$ and $p=\rho+2$, Then according to Cauchy Schwarz were:

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left|u_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|^{2}\right)+\frac{1}{p} \frac{d}{d t}\left(\int_{\Omega}\left|u_{m}(x, t)\right|^{p} d x\right) \leq|f(t)|\left|u_{m}^{\prime}(t)\right| \tag{20}
\end{equation*}
$$

So we integrate between $0, t$, we deduce:

$$
\begin{gather*}
\frac{1}{2}\left(\left|u_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|^{2}\right)+\frac{1}{p}\left\|u_{m}(x, t)\right\|_{L^{p}(\Omega)}^{p} \leq \frac{1}{2}\left|u_{1 m}\right|^{2}+\frac{1}{2}\left\|u_{0 m}\right\|^{2} \\
+\frac{1}{p}\left\|u_{m}(0)\right\|_{L^{p}(\Omega)}^{p}+\int_{0}^{t}|f(\sigma)|\left|u_{m}^{\prime}(\sigma)\right| d \sigma \tag{21}
\end{gather*}
$$

From (17), (18) and inequality:

$$
a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2} .
$$

We have

$$
|f(\sigma)|\left|u_{m}^{\prime}(\sigma)\right| \leq \frac{1}{2}|f(\sigma)|^{2}+\frac{1}{2}\left|u_{m}^{\prime}(\sigma)\right|^{2} .
$$

Then

$$
\begin{align*}
\frac{1}{2}\left(\left|u_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|^{2}\right) & +\frac{1}{p}\left\|u_{m}(x, t)\right\|_{L^{p}(\Omega)}^{p} \leq c+\frac{1}{2} \int_{0}^{t}|f(\sigma)|^{2} d \sigma \\
& +\frac{1}{2} \int_{0}^{t}\left|u_{m}^{\prime}(\sigma)\right|^{2} d \sigma \tag{22}
\end{align*}
$$

But

$$
f \in L^{2}(Q) \Rightarrow \int_{0}^{t}|f(\sigma)|^{2} d \sigma \leq \text { constant. }
$$

We deduce, therefore, in particular (22) that:

$$
\begin{equation*}
\left|u_{m}^{\prime}(t)\right|^{2} \leq c^{\prime}+\int_{0}^{t}\left|u_{m}^{\prime}(\sigma)\right|^{2} d \sigma \tag{23}
\end{equation*}
$$

And after the Gronwall inequality we have:

$$
\begin{equation*}
\left|u_{m}^{\prime}(t)\right| \leq \text { constant } \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|u_{m}(t)\right\|+\left\|u_{m}(x)\right\|_{L^{p}(\Omega)} \leq \text { constant } \tag{25}
\end{equation*}
$$

By (24), (25) and when $m \rightarrow \infty$ we have: u_{m} in a bounded set of $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right)$ and u_{m}^{\prime} in a bounded set of $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.

2.4 Third step: passage to the limit

In the second step we were u_{m} borned in $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right)$, then it is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.Since $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right) .\left\{\right.$ resp. $\left.L^{\infty}\left(0, T ; L^{2}(\Omega)\right)\right\}$ is the dual of $L^{1}\left(0, T ; H^{-1}(\Omega)+L^{p^{\prime}}(\Omega)\right)\left\{\right.$ resp. of $\left.L^{1}\left(0, T ; L^{2}(\Omega)\right)\right\}$, there exists a result u_{m}, u_{μ} sush that :

$$
\begin{gathered}
\forall g \in L^{1}\left(0, T ; H^{-1}(\Omega)+L^{p^{\prime}}(\Omega)\right): \\
\int_{0}^{T}\left(u_{\mu}(t), g(t)\right) d t \underset{\mu \rightarrow \infty}{\rightarrow} \int_{0}^{T}(u(t), g(t)) d t
\end{gathered}
$$

Which implies:

$$
\begin{equation*}
u_{\mu} \rightarrow u \text { weak in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right) \text { and in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{26}
\end{equation*}
$$

So :

$$
\exists u_{\mu}^{\prime} \rightarrow u^{\prime} \text { in } D^{\prime}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right) \Rightarrow u_{\mu}^{\prime} \rightarrow u^{\prime} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
$$

$$
\begin{equation*}
\text { and in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{27}
\end{equation*}
$$

Then in particular u_{m} bounded in $H^{1}(Q)$, but we know that the next injection is compact:

$$
\begin{equation*}
H^{1}(Q) \hookrightarrow L^{2}(Q) \tag{28}
\end{equation*}
$$

And according to the definition of compact injection, we can suppose the sequence u_{μ} extracted u_{m} satisfies (26) and (27), then u, u^{\prime} exists and in $L^{2}(Q)$ then:

$$
\left\{\begin{array}{c}
u_{\mu} \rightarrow u \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right) \text { strong (a.e) }, \tag{29}\\
u_{\mu}^{\prime} \rightarrow u^{\prime} \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { weak (a.e). }
\end{array}\right.
$$

Studying the convergence of $\left|u_{m}\right|^{\rho} u_{m}$:
$\left|u_{m}\right|^{\rho} u_{m}$ is bounded in $L^{\infty}\left(0, T ; L^{p^{\prime}}(\Omega)\right)$, then
We set:

$$
\begin{equation*}
\left|u_{\mu}\right|^{\rho} u_{\mu} \rightarrow w \text { in } L^{\infty}\left(0, T ; L^{p^{\prime}}(\Omega)\right), \tag{30}
\end{equation*}
$$

Showing that:

$$
\begin{equation*}
w=|u|^{\rho} u \tag{31}
\end{equation*}
$$

For this we give the following lemma:

2.4.1 Lemma:

Let O be an open bounded $\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}, g_{\mu}$ and g des functions of $L^{q}(O), 1<q<$ ∞, such that

$$
\left\|g_{\mu}\right\|_{L^{q}(O)} \leq c, \quad g_{\mu} \rightarrow g \text { p.p. in } O
$$

Then

$$
g_{\mu} \rightarrow g \text { in } L^{q} \text { weak. }
$$

When we ask: $O=Q$ and $g_{\mu}=\left|u_{\mu}\right|^{\rho} u_{\mu}$, from (29):

$$
u_{\mu} \rightarrow u \text { in } L^{2}(Q) \text { (a.e) }
$$

Therefore :

$$
g_{\mu}=\left|u_{\mu}\right|^{\rho} u_{\mu} \rightharpoonup|u|^{\rho} u=g(\text { a.e }) \text { in } L^{p^{\prime}}(\Omega)
$$

Such that $p^{\prime}=\frac{\rho+2}{\rho+1}=q($ for $p=\rho+2)$, and after (30) :

$$
\begin{equation*}
\left|u_{\mu}\right|^{\rho} u_{\mu} \rightharpoonup w \text { in } L^{p^{\prime}}(\Omega) . \tag{32}
\end{equation*}
$$

Since the limit is unique, therefore:

$$
g=|u|^{\rho} u=w .
$$

We show that this solution satisfies the equation (15), so when we set $m=\mu$ and we fix j such that $\mu>j$; then:

$$
\begin{equation*}
\left(u_{\mu}^{\prime \prime}(t), w_{j}\right)+a\left(u_{\mu}, w_{j}\right)+\left(\left|u_{\mu}(t)\right|^{\rho} u_{\mu}(t), w_{j}\right)=\left(f(t), w_{j}\right) . \tag{33}
\end{equation*}
$$

From (30) and (31)

$$
\begin{gather*}
\left(u_{\mu}^{\prime}, w_{j}\right) \rightharpoonup\left(u^{\prime}, w_{j}\right) \text { in } L^{\infty}(0, T) \Rightarrow \frac{d}{d t}\left(u_{\mu}^{\prime}, w_{j}\right) \\
=\left(u_{\mu}^{\prime \prime}, w_{j}\right) \rightarrow\left(u^{\prime \prime}, w_{j}\right) \text { in } D^{\prime}(0, T) \tag{34}
\end{gather*}
$$

Where:

$$
a\left(u_{\mu}, w_{j}\right) \rightharpoonup a\left(u, w_{j}\right) \text { in } L^{\infty}(0, T) .
$$

And after (30) and (31)

$$
\left(\left|u_{\mu}\right|^{\rho} u_{\mu}, w_{j}\right) \rightharpoonup\left(|u|^{\rho} u, w_{j}\right) \text { in } L^{\infty}(0, T)
$$

It follows therefore from (32) that:

$$
\frac{d^{2}}{d t^{2}}\left(u, w_{j}\right)+a\left(u, w_{j}\right)+\left(|u|^{\rho} u, w_{j}\right)=\left(f, w_{j}\right)
$$

According to the density of the basis $\left\{w_{j}\right\}$ in separable space $H_{0}^{1}(\Omega) \cap$ $L^{p}(\Omega)$, we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}(u, v)+a(u, v)+\left(|u|^{\rho} u, v\right)=(f, v) \forall v \in H_{0}^{1}(\Omega) \cap L^{p}(\Omega) \tag{35}
\end{equation*}
$$

Then the solution u satisfies (4), (5) and (6).
It remains to show that the solution u satisfies the initial conditions (7), (8) : $u(0)=u_{0}, u^{\prime}(0)=u_{1}$.

By (26) and (27) we have:

$$
\begin{equation*}
u_{\mu} \rightarrow u \text { in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right), \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d u_{\mu}}{d t}=u_{\mu}^{\prime} \rightharpoonup u^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{37}
\end{equation*}
$$

So u_{μ} is continuous on $[0, T]$ then continous on 0 and then:

$$
u_{0 \mu}=u_{\mu}(0) \rightarrow u(0)=u_{0} \text { in } H_{0}^{1}(\Omega) \cap L^{p}(\Omega),
$$

whence (7).
And yet

$$
\begin{aligned}
& \left(u_{\mu}^{\prime \prime}, w_{j}\right) \rightharpoonup\left(u^{\prime \prime}, w_{j}\right) \text { in } L^{\infty}(0, T), \\
& \left(u_{\mu}^{\prime}, w_{j}\right) \rightharpoonup\left(u^{\prime}, w_{j}\right) \text { in } L^{\infty}(0, T) .
\end{aligned}
$$

Then

$$
\left.\left(u_{\mu}^{\prime}(0), w_{j}\right) \rightharpoonup\left(u^{\prime}, w_{j}\right)\right|_{t=0}=\left(u^{\prime}(0), w_{j}\right)
$$

According (14) :

$$
\left(u_{\mu}^{\prime}(0), w_{j}\right) \rightharpoonup\left(u_{1}, w_{j}\right) .
$$

We have:

$$
\left(u^{\prime}(0), w_{j}\right)=\left(u_{1}, w_{j}\right), \forall j .
$$

Then:

$$
u^{\prime}(0)=u_{1},
$$

Whence (8).

3 Uniqueness of solution

3.0.2 Theorem 2 :

It is located in the assumptions of Theorem 1 with:

$$
\begin{equation*}
\rho \leq \frac{2}{n-2} \tag{38}
\end{equation*}
$$

(any finite ρ if $n=2$). Then the solution u obtained in Theorem one is unique.

3.0.3 Preuve :

Let u, v be two solutions, in the sense of Theorem 2, then $w=u-v$ satisfies:

$$
\left\{\begin{array}{c}
w^{\prime \prime}-L w=|v|^{\rho} v-|u|^{\rho} u \\
w(0)=0, w^{\prime}(0)=0, \\
w \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right), \\
w^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
\end{array}\right.
$$

So (28) implies:

$$
\left(w^{\prime \prime}, v\right)+a(w, v)=\left(|v|^{\rho} v-|u|^{\rho} u, v\right) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

To replace v by w^{\prime} must $w^{\prime} \in H_{0}^{1}(\Omega)$ for $v \in H_{0}^{1}(\Omega)$ but $w^{\prime} \in L^{2}(\Omega)$ then we must introduce an auxiliary function:

$$
\begin{gathered}
\forall s \quad \in \quad] 0, T[\\
\Psi \quad
\end{gathered} \begin{gathered}
: \quad] 0, T[\rightarrow \mathbb{R} \\
t \mapsto \Psi(t)=\left\{\begin{array}{cc}
-\int_{t}^{s} w(\sigma) d \sigma, t \leq s ; \\
0, & t>s
\end{array}\right. \\
\Psi^{\prime}(t)=w(t) ; \quad w_{1}(t)=\int_{0}^{t} w(\sigma) d \sigma \text { if } \forall t \leq s .
\end{gathered}
$$

Thus

$$
\Psi(t)=-\int_{t}^{s} w(\sigma) d \sigma=w_{1}(t)-w_{1}(s) \Rightarrow \Psi(0)=-w_{1}(s)
$$

Then (28) gives:

$$
\begin{aligned}
\left(w^{\prime \prime}, \Psi(t)\right)+a(w, \Psi(t)) & =\left(|v|^{\rho} v-|u|^{\rho} u, \Psi(t)\right) \Rightarrow \\
\frac{1}{2}|w(s)|^{2}+\frac{1}{2}\left\|w_{1}(s)\right\|^{2} & =-\int_{0}^{s}\left(|v|^{\rho} v-|u|^{\rho} u, \Psi(t)\right) d t
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|-\left(|v|^{\rho} v-|u|^{\rho} u, \Psi(t)\right)\right| \leq & c \int_{\Omega} \sup \left(|u|^{\rho},|v|^{\rho}\right)|u-v||\Psi(t)| d x= \\
& c \int_{\Omega} \sup \left(|u|^{\rho},|v|^{\rho}\right)|w(t)||\Psi(t)| d x
\end{aligned}
$$

According to Holder's inequality we have:

$$
\begin{gathered}
c \int_{\Omega} \sup \left(|u|^{\rho},|v|^{\rho}\right)|w(t)||\Psi(t)| d x=c \int_{\Omega} \sup \left(|u|^{\rho},|v|^{\rho}\right)|w(t)| . \\
\quad\left|w_{1}(t)-w_{1}(s)\right| d x \leq c\left[\left\||u|^{\rho}\right\|_{L^{n}(\Omega)}+\left\||v|^{\rho}\right\|_{L^{n}(\Omega)}\right]
\end{gathered}
$$

As

$$
\frac{1}{n}+\frac{1}{q}+\frac{1}{2}=1
$$

Then

$$
\frac{1}{q}=\frac{n-2}{2 n} \Rightarrow q=\frac{2 n}{n-2}
$$

But in Theorem 2

$$
\rho \leq \frac{2}{n-2} \Rightarrow \rho n \leq \frac{2 n}{n-2}=q \Rightarrow \rho n \leq q
$$

We have

$$
H_{0}^{1}(\Omega) \subset L^{q}(\Omega), \frac{1}{q}=\frac{1}{2}-\frac{1}{n}, n \geq 3
$$

Then

$$
\begin{gathered}
\left|\int_{\Omega}\left(|u|^{\rho} u-|v|^{\rho} v\right) \Psi(t) d x\right| \leq \\
c\left(\|u(t)\|^{\rho}+\|v(t)\|^{\rho}\right)\left(\left\|w_{1}(t)\right\|_{L^{q}(\Omega)}+\left\|w_{1}(s)\right\|_{L^{q}(\Omega)}\right)\|w(t)\|_{L^{2}(\Omega)}
\end{gathered}
$$

And as $u, v \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ for $\left(H_{0}^{1}(\Omega) \subset L^{q}(\Omega)\right)$, we have :

$$
\left|\int_{\Omega}\left(|u|^{\rho} u-|v|^{\rho} v\right) \Psi(t) d x\right| \leq c|w(t)|\left(\left\|w_{1}(t)\right\|+\left\|w_{1}(s)\right\|\right)
$$

So

$$
|w(s)|^{2}+\left\|w_{1}(s)\right\|^{2} \leq c \int_{0}^{s}\left(|w(t)|^{2}+\left\|w_{1}(t)\right\|^{2}\right) d t
$$

According to Gronwall inequality we have:

$$
\begin{aligned}
|w(s)|^{2}+\left\|w_{1}(s)\right\|^{2} & =0 \Rightarrow \\
\left\{\begin{array}{c}
w(s)=0 \\
w_{1}(s)=0
\end{array}\right. & \Rightarrow\left\{\begin{array}{c}
u=v \\
u^{\prime}=v^{\prime}
\end{array}\right.
\end{aligned}
$$

Then we have the uniqueness.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, 1976.
[2] H. Brezis, Equations et inéquations non linéaires dans les espaces vectorielsen dualité, Ann, Ins. Fourier, 18, (1968), 115-175.
[3] H. Brezis, Opérateurs maximaux monotone et semi groupes de contractionsdans les espaces de Hilbert, North Holland, Amsterdam (1973).
[4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson 1983.
[5] S. D. Chartterji, Cours d'Analyse, vols 3. Presses polytechniques et universitaires romandes, Lausanne, 1998..
[6] P.G. Ciarlet, Elasticité tridimentionnelle. Masson. (1986).
[7] G. Duvaut, J.L. Lions, Les inéquations en mécanique et en physique. Dunod. Paris. (1972).
[8] J. L. Lions-Magenes, Problèmes aux limites non homogènes et applications, volume1. Dunod Paris,1968.
[9] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod. (1969).
[10] Luc Tartar, Topics in non lineair analysis. Université de Paris-Sud, Publications Mathematiques d'Orsay,novembre 1978.
[11] B. Merouani, M. Meflah, A. Boulaouad, The Generalized and perturbed Lamé system, Applied Mathematical Sciences Vol.2, 2008,no. 49,24252430..
[12] F. Messelmi, B. Merouani, M. Meflah, Nonlinear thermoelasticity problem, Analele Universitatii Oradea, Fasc. Matematica,Tom XV (2008), 207217.
[13] V. Mikhailov, Equations aux dérivées partielles. Traduction française Editions Mir, 1980.
[14] V. Patron, P. Perline, Méthode de la théorie mathématique de l'élasticité, Editions Mir, Moscou, 1981.
[15] P.A. Raviart \& J. M Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, Masson 1983.
[16] Taylor M.E, Partial differential non linear equations III Springer. (1996).
Received: November, 2009

