UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http:/iwww.cepis.org/>) by Novatica
<http:/www.ati.esinovatica/>, journal of the Spanish CEPIS saciety ATI
(Asociacion de Técnicos de Informética, <http:/www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novatica

UPGRADE was created in October 2000 by CEPIS and was first
published by Novatica and INFORMATIK/INFORMATIQUE, hi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European

NETwork), the network of CEPIS member societies’ publications, that

currently includes the following ones:

+ InfoRewiew, magazine from the Serbian CEPIS society JISA

« Informatica, journal from the Slovenian CEPIS society SDI

+ Informatik-Spektrum, journal published by Springer Verlag on behalf
of the CEPIS sacieties GI, Germany, and SI, Switzerland

+ ITNOW, magazine published by Oxford University Press on behalf of
the British CEPIS society BCS

+ Mondo Digitale, digital journal from the Italian CEPIS society AICA

+ Novética, journal from the Spanish CEPIS society ATl

+ OCG Journal, journal from the Austrian CEPIS society OCG

+ Pliroforiki, journal from the Cyprus CEPIS society CCS

« Télvumél, journal from the Icelandic CEPIS society ISIP

Editorial Team

Chief Editor: Lloreng Pagés-Casas

Deputy Chief Editor: Rafael Fernandez Calvo
Associate Editor: Fiona Fanning

Editorial Board

Prof. Vasile Baltac, CEPIS President

Prof. Wolffried Stucky, CEPIS Former President

Hans A. Frederik, CEPIS Vice President

Prof. Nello Scarabottolo, CEPIS Honorary Treasurer
Fernando Piera Gémez and Lloreng Pagés-Casas, ATI (Spain)
Francois Louis Nicolet, SI (Switzerland)

Roberto Carniel, ALSI - Tecnoteca (Italy)

UPENET Advisory Board

Dubravka Dukic (inforeview, Serbia)

Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Lloreng Pagés-Casas (Novatica, Spain)
Veith Risak (OCG Journal, Austria)

Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kari Olafsson (Tlvumal, Iceland)
Rafael Fernandez Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
“Indiscernible Identity" / © CEPIS 2010
Layout Design: Francois Louis Nicolet
Composition: Jorge Ll&cer-Gil de Ramales

Editorial correspondence: Lloreng Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novatica 2010 (for the monograph)
© CEPIS 2010 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team
The opinions expressed by the authors are their exclusive responsibility
ISSN 1684-5285

Monograph of next issue (April 2010)

"Information Technology
inTourism Industry"

(The full schedule of UPGRADE is available at our website)

©@cers PHPGRADE

The Evropean Journal for the Informatics Professional
http:/ /www.upgrade-cepis.org

Vol. Xl, issue No. 1, February 2010

2 Editorial: Serbian Publication InfoReview joins UPENET, the Net-
work of CEPIS Societies Journals and Magazines

2 From the Chief Editor’s Desk
New Deputy Chief Editor of UPGRADE

3 Presentation: Identify Yourself but Don’t Reveal Your ldentity —
Javier Lopez-Mufioz, Miguel Soriano-Ibafiez, and Fabio Martinelli

6 Digital Identity and Identity Management Technologies — Isaac
Agudo-Ruiz

13 SWIFT - Advanced Services for Identity Management — Alejandro
Pérez-Méndez, Elena-Maria Torroglosa-Garcia, Gabriel Lépez-
Millan, Antonio F. Gomez-Skarmeta, Joao Girao, and Mario
Lischka

21 A Privacy Preserving Attribute Aggregation Model for Federated
Identity Managements Systems — George Inman and David
Chadwick

27 Anonymity in the Service of Attackers — Guillermo Suarez de
Tangil-Rotaeche, Esther Palomar-Gonzalez, Arturo Ribagorda-
Garnacho, and Benjamin Ramos-Alvarez

32 The Importance of Context-Dependent Privacy Requirements and
Perceptions to the Design of Privacy-Aware Systems — Aggeliki
Tsohou, Costas Lambrinoudakis, Spyros Kokolakis, and Stefanos
Gritzalis

38 Privacy... Three Agents Protection — Gemma Déler-Castro

44 Enforcing Private Policy via Security-by-Contract — Gabriele
Costa and llaria Matteucci

53 How Do we Measure Privacy? — David Rebollo-Monedero and
Jordi Forné

59 Privacy and Anonymity Management in Electronic Voting — Jordi
Puiggali-Allepuz and Sandra Guasch-Castell6

66 Digital Identity and Privacy in some New-Generation Information
and Communication Technologies — Agusti Solanas, Josep
Domingo-Ferrer, and Jordi Castella-Roca

72 Authentication and Privacy in Vehicular Networks — José-Maria
de Fuentes Garcia-Romero de Tejada, Ana-Isabel Gonzalez-Tablas
Ferreres, and Arturo Ribagorda-Garnacho

79 From ITNOW (BCS, United Kingdom)
ICT in Education
Enthusing Students — Bella Daniels
81 From InfoReview (JISA, Serbia)
Information Society
"Knowledge Society" is a European Educational Imperative that
Should not Circumvent Serbia — Marina Petrovic

84 Selected CEPIS News — Fiona Fanning
86 Privacy-Consistent Banking Acquisition — CEPIS Legal and Se-
curity Special Interest Network
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some

articles online) by Novatica, journal of the Spanish CEPIS society ATl (Asociacion de Técnicos de
Informatica) at <http://www.ati.es/novatica/>.

Identity and Privacy Management

Enforcing Private Policy via Security-by-Contract

Gabriele Costa and llaria Matteucci

This work aims to investigate how the Security-by-Contract (SxC) paradigm, developed for providing security assurances
to mobile applications, can be used for guaranteeing the security of communicating systems composed by several, hetero-
geneous components. These components need to communicate with each other by establishing direct, point to point con-
nections. Direct connections can involve components sharing no common communication protocols and need a suitable
interface. Enablers are in charge of providing these communication interfaces. Each component has a local security
policy composing a public and a private part. When a communication between two components has to be established,
each component asks the enabler to provide a communication interface that respects its public policy. We exploit the
Security-by-Contract approach for assuring that the application implementing the communication interface is always
safe, i.e., it satisfies the security policies set by components. Moreover, we present an extension of the Security-by-Con-
tract for dealing with trust. Trust management is useful when one of the involved actors is considered to be potentially

untrusted and the others want to measure its trust level.

Keywords: Distributed Connecting System, Private
Policy Enforcement, Security-by-Contract.

1 Introduction

The growing diffusion of computational entities and their
composition in networks has made security a critical issue
in every phase of the software life-cycle. The modern sce-
narios present a complexity degree that only few years ago
was unpredictable.

Let us consider acommunicating system comprising two
classes of actors: components and enablers. Components are
the end-users in our network. They can be either software
agents (e.g., programs) or physical devices (e.g., mobile
phones). Whenever two components want to communicate
with each other they need to agree on a common protocol.
If this is not possible, they ask an enabler to provide them
with a way to communicate. Enablers store information for
creating/choosing an appropriate application allow the com-
munication between different components. Moreover, each
component has a local security policy which is always re-
spected by applications running on it. Such security policy
is the combination of two local security policies: a private
policy and a public one. A private policy is a security policy
hidden from the external world, e.g., because it concerns
some sensitive data. A public policy however is made pub-
licly accessible, e.g., because it does not involve informa-
tion that the component considers to be private.

Our goal is to guarantee that the communication between
components is always secure, i.e., a provided application
satisfies local security policies. We firstly provide a descrip-
tion of the threat models for that system. Secondly, we show
that the Security-by-Contract paradigm [1] can be suitably
applied for dealing with them. In doing this, we reduce our
analysis to systems in which components trust each other
but they do not trust the enabler.

The Security-by-Contract (SxC) framework was devel-
oped for providing security of mobile applications. It is based
on the idea of contract of an application. Roughly, a con-

44 UPGRADE vol. X1, No. 1, February 2010

Authors

Gabriele Costa has a MSc degree in Computer Science from
University of Pisa, Italy. He is a PhD student in Computer
Science at University of Pisa and a researcher of the security
group of the National Research Council (CNR). His research
interests are the study of foundational and practical aspects of
the security of programming languages, concurrent systems and
services. <Gabriele.Costa@iit.cnr.it>

llaria Matteucci (IIT-CNR) has a MSc degree in Mathematics
(2003) from the University of Pisa, Italy, and a Master in Internet
Technologies from the Dept. of Computer Science Engineering
of the University of Pisa and the IIT-CNR (2004). She has also a
PhD in Logic and Theoretical Computer Science (Logica
Matematica e Informatica Teorica— LoMIT), University of Siena,
Italy (2008). She is currently a researcher of the Institute of
Informatics and Telematics of the Italian National research Council
(I'T-CNR). She is co-author of several scientific publications on
journals and conference/workshop proceedings. Her main research
interest involves formal models for security by focusing on the
problem of the synthesis of secure systems. In particular, Dr.
Matteucci’s current research interests include the study of process
algebra based techniques for run-time enforcement of security
properties in such a way considered systems, ranging from a
distributed systems to web services, result secure. She also
participates in European projects in the area of security on mobile
devices, of data-centric context-aware information sharing and
of the eternal connections. <llaria.Matteucci@iit.cnr.it>

tract is a description of the behaviour of an application that
comes together with the application itself. The typical sce-
nario in which the SxC is applied consists in a device user
defining his own security policy. When the user receives
an application he verifies whether its code and its contract
actually match. If the check fails the user can decide to
delete the application or to enforce the security policy on it
by exploiting a proper enforcement infrastructure. Other-

© Novatica

Identity and Privacy Management

wise, the system can proceed and verifies whether the con-
tract satisfies the user’s policy. Once again, if this step fails
the solution consists of enforcing the active policy on the
execution. Finally, if the previous checks were positively
passed, the application can be executed with no active
runtime enforcement.

In the simplest case, we assume we have a single ena-
bler. Two components send the enabler a communication
request and their public security policies. The enabler pro-
vides an application, e.g., by synthesizing it on-the-fly or
selecting it from an existing pull, with a contract describing
its behaviour. Components expect to receive a contract that
satisfies their public security policies. Remarkably, being
not aware about the private security policies of the compo-
nents, the enabler does not guarantee that the application to
comply with them. Each component involved in the com-
munication checks whether the contract is compliant with
both its own public and private policy.

We also consider trust aspects by extending the Secu-
rity-by-Contract paradigm with trust (SXCxT) [2]. Indeed,
we extend our scenario by assuming to have many enablers
forming a cloud. Two components that want to communi-
cate with each other send the request to the cloud of ena-
blers. Similarly to the previous case, each enabler provides
an application. However, in this scenario different enablers
concur to provide their applications and the components
decide which application will be adopted. Clearly, compo-
nents can discriminate according to their levels of trust w.r.t.
the enablers.

Hereafter, assuming that components associate each
enabler with a certain level of trust, we propose an integra-
tion of the SXC paradigm with a monitoring/enforcement
infrastructure dealing with contracts. Contract monitoring
allows for trust level management of enablers depending

on their applications behaviour. Indeed let us assume that
enablers are initially considered to be trusted. When com-
ponents obtain some application provided by an enabler,
they start monitoring it. Monitoring follows the execution
and updates the trust value associated with the enabler de-
pending on the actions fired by the application.

The paper is structured as follows: Section 2 recalls some
background notions about the Security-by-Contract para-
digm. Section 3 describes threat models for the considered
system and Section 4 and 5 present the application of the
SxC and SxCXT paradigms to threat models, respectively.
Section 6 compares our work with what already exists in
literature. Section 7 concludes the paper and describes some
future work.

2 Background

Security-by-contract (SxC) is a paradigm for providing
security assurances to mobile applications [1]. According
to [3], the basic idea of Security-by-Contract is to certify
the code by binding it together with a contract. Loosely
speaking, a contract contains a description of the relevant
features of the application and the relevant interactions with
the hosting platform. Relevant features include, among oth-
ers, sensitive memory usage, secure and insecure web con-
nections, user privacy protection and data confidentiality.

By signing the code, developers certify its compliance
with the stated claims of its security-relevant behaviour.

Definition 2.1: A contract is a formal complete and cor-
rect specification of the behavior of the application for what
concerns relevant security actions (e.g., Virtual Machine API
call, Operating System Calls). It defines a subset of the traces
of all possible security actions.

The second cornerstone of the SxC approach is the con-
cept of policy. A mobile platform can specify its own con-

i L] Enforce

{’: Start B Check -

A Evidence

YES

YIN Policy

Mateh
Contract
& Policy

QHN NO

YES

Figure 1: The Security-by-Contract Application Life-cycle [3].

© Novatica

UPGRADE vol. X1, No. 1, February 2010 45

Identity and Privacy Management

tractual requirements through a customised policy. Moreo-
ver, policies can be user-defined. In both cases, a contract
matching the policy means that the corresponding applica-
tion (provider) declares an acceptable behaviour.

Definition 2.2: A policy is a formal complete specifica-
tion of the acceptable behavior of applications to be executed
on the platform for what concerns relevant security actions
(e.g., Virtual Machine API calls, Operating System Calls).
It defines a subset of the traces of all possible security ac-
tions.

The Security-by-Contract paradigm works as follows:
when a client receives an application, it verifies whether the
code and the contract actually match by using an evidence
checking procedure. If the check fails, the user can decide
to refuse (delete) the MIDlet or to enforce the security policy
on it by exploiting a monitoring/enforcement infrastructure.

The enforcement approach has been shown to be feasi-
ble on mobile devices exploiting several different techniques
[4][5]

Otherwise, the system can proceed to verify whether the
contract (correctly representing the application) satisfies the
user’s policy. Once again, if this step fails the solution con-
sists of enforcing the active policy on the execution. Finally,
if the previous checks were positively passed, the MIDlet
can be executed with no active runtime monitor.

The Contract-Policy matching function ensures that any
security relevant behavior declared by the contract is also
allowed by the policy. This matching step can be done w.r.t.
different behavioural relations, e.g., language inclusion [6]
or simulation relation [7]. Hence, the matching procedure
formally guarantees that applications having a contract that
is compliant with the active policy never violate it. Figure 1
shows the SxC pre-execution strategy.

3 Threat Models

We introduce and detail several threat models. Let us
consider a basic scenario in which two components want to
establish a communication. For sake of simplicity, we as-
sume that there is only one enabler in the network. To com-
municate, the two components send their requirements to
the enabler. The enabler then produces a suitable applica-
tion by taking it from a pre-compiled repository or synthe-
sizing a new one on-the-fly.

In this process we distinguish two security levels:

m Local security of each component of the network.
Each component sets a local policy that has to be locally
satisfied. Such security policy is the combination of a pri-
vate policy and a public one. A private policy is a security
policy that a component does not declare to the external
world, e.g., a policy that speaks about sensitive data. A pub-
lic policy, however, is one that the component consider freely
deliverable, e.g., a policy that does not involve private in-
formation. Clearly, two limit cases exist: i) acomponent has
only a private policy or ii) it sets only a public policy.

m Global security of the distributed system. Interactions
among components and enablers must satisfy some security
policy describing the correct behaviour of the distributed

46 UPGRADE vol. X1, No. 1, February 2010

system as a whole.
Focusing on trust aspects, the following sub-cases arise:
m The two components involved in the communica-
tion trust each other but they do not trust the enabler.
m Each component involved in the communication
trusts the enabler but does not trust the other component.
m All actors (components and enabler) trust each other.
m No trust relationships exist between two components
or between a component and the enabler.

4 Security-by-Contract for Connecting Compo-
nents

We show how to apply the SxC paradigm for providing
network components with local security. As we said in Sec-
tion 3, here we assume two components, trusting each other,
that interact with an untrusted enabler.

4.1 Private and Public Security Policy

First, we investigate the possible relationship existing
between public and private policies defined for each single
component. Three cases arise:

1. The public policy is a generalization of the private
policy. This means that the public policies allow more ex-
ecution than the private one. A particular instance of this
case occurs when only the private policy has been defined.

2. The private policy is a generalization of the public
one. Referring to the notion of compliance used in the SxC
paradigm, this case means that whenever the public policy
is satisfied the private one will also be. An instance of this
case occurs when no private policy has been set on the com-
ponent.

3. Private and public policy partially overlap. There
exists at least one execution that satisfies both the private
and the public policy.

Some examples can clarify the above classification.

Example 4.1: Imagine a component requiring a connec-
tor and declaring the following, informally defined, poli-
cies:

m Ppub: "Always connect to the same host"

m Ppriv: "Encrypt every message with key k"

As it refers to some sensitive data, i.e., k, the compo-
nent is interested in keeping Ppriv secret. Clearly, these two
policies do not imply each other (unencrypted messages
can be delivered to a single host or correctly encrypted mes-
sages can be sent to multiple hosts). However, there are
executions satisfying both of them, e.g., a single, encrypted
message is sent. This example belongs to the third case in-
troduced above.

Example 4.2: Imagine now a component similar to the
previous one, but defining a different private policy.

m PP®; "Always connect to the same host".

m PPV "Connect only with host h".

Here, the set of behaviours accepted by PP™ also satis-
fies PP, Hence, we are in the second case.

In addition to the relation existing between private and
public security policy, we must also investigate the relation
among security policies and applications contract. All pos-

© Novatica

Identity and Privacy Management

a) Folicies partially overlapped

Priv

c) Dizjoint policies

b) Pub generalizes Pov
Priv
m Cormtract
d) Priv generalizes Fub

Figure 2: A Graphical Representation of Possible Relations among Private Policy, Public Policy and Contract.

sible relations are summarized in Figure 2.

In the following, we assume that the public policy gen-
eralizes the private policy (case (b) in Figure 2). The rela-
tionship between the policy and the contract drives the Se-
curity-by-Contract run-time strategy. Figure 3 shows
schematically the system behaviour.

If the contract complies with the private policy (M in
figure), the system monitors the application run-time com-
pliance w.r.t. its contract. Instead, if the contract does not
comply with the private policy (E in figure), the private
policy is enforced on the executing application. Note that
we are intentionally ignoring the case in which private policy
and contract have no intersection. Indeed, whenever this
happens, the enforcement process forces the execution to
generate only empty traces.

4.2 Enforcing Private Security Policy through SxC
Let us consider the scenario in Figure 4. Two compo-

Figure 3: A Graphical Representation of Scenario (B). M
denotes Contract Monitoring and E Policy Enforcement.

© Novatica

nents want to start a conversation and ask an enabler for a
suitable application, i.e., a connector. Each component has
its own security policy composed by a private and a public
part. Both components declare a public policy that general-
izes the private one.

Let P, and P, be the public policies of the two compo-
nents. To communicate, both components send a connec-
tion request and their local public policies to the enabler.

If possible, the enabler answers by providing the com-
ponents with an application. This application will be a mo-
bile code that the enabler annotated with a contract C de-
noting its behaviour. By design, when the enabler returns a
contract C then it also declares, under its own responsibil-
ity, that C satisfies both P, and P,.

After retrieving the application, the components must
verify how this contract fits with their private policies (P"™,
and PP, respectively). Since Ppub(m) generalise PP) COM-
ponents only need to check contract against private poli-
cies If the application is accepted from both the compo-
nents, it is used to establish the communication.

An instance of this scenario arises when both compo-
nents declare no public security policy. Since there is no
assumption about the application contract that the enabler
returns, this case reduces to the original SxC scenario for
mobile devices [1].

However, when a component receives an application it
decides which monitoring/enforcement configuration must
be activated. Firstly, the component verifies whether the code
comes from a trusted source. If the check fails then the com-
ponent can decide to refuse the application or to enforce
the security policy on it (Enforce Policy).

Otherwise, the component verifies whether the contract
(considered to correctly denote the application) satisfies the
private security policy (Contract-Policy Matching [7] at
deployment-time). If this step fails the solution consists of
enforcing the active policy on the execution and, possibly,

UPGRADE vol. X1, No. 1, February 2010 47

Identity and Privacy Management

Network

P1

P2

CI=F'2)

I\ CEP1
If

Componant

Figure 4: Secure Application.

also monitoring the application contract. In this scenario,
the contract monitoring configuration can be activated on a
statistical base in order to record possible application
misbehaviours leading to a trust weight adjustment.

Finally, if the previous checks were positively passed,
the communication is established and only the contract
monitoring is turned on.

5 Enablers Trust Management

We detail our trust management-oriented extension of
the SxC paradigm, hereafter denoted by SXCXT [2]. The main
novelty of our technique consists in adding a new compo-
nent to the standard architecture. This module is responsi-

-Netweri-;

P1

|'\. CEFP1

Componeant

ble for contract monitoring and reacts to contract violations
by updating the trust level of the involved enabler.

This could be useful, for instance, if we consider more
than one enabler in the system (see Figure 5).

Figure 6 shows the application life-cycle. In model, the
Check Evidence step has been replaced by a check on the
enabler trust measure (Trusted Provider). This check dis-
criminates between running applications guarded by policy
enforcement and applications being contract-monitored.

Whenever the contract satisfies the local public policy,
two possible relations with the private policy arise:

1. The contract satisfies the local private security
policy. In this case our monitoring/enforcement infrastruc-

P2

Companent

Companent

Figure 5: Secure and Trusted Application.

48 UPGRADE vol. X1, No. 1, February 2010

© Novatica

Identity and Privacy Management

Start ™ o rusted o //J;Q\ND __| Enforce |
v Prowicer o T Policy
|"r’ES
Iatch
Confract
& Policy

Enforce

G R

MO
YES

Manitar -
Contract -

Contract

Figure 6: The Extended Security-by-Contract Application Life-cycle.

ture is required to monitor only the application contract.
Indeed, under these conditions, contract adherence also
implies private policy compliance. If no violation is detected
during the execution then the application worked as ex-
pected. Otherwise, we discovered that a trusted party pro-
vided us with a fake contract. Our framework reacts to this
event by reducing the level of trust of the indicted provider
and switching to the policy enforcement modality.

2. The contract does not satisfy the local private secu-
rity policy. Since the contract declares some potentially un-
desired behaviour, policy enforcement is turned on. Simi-
larly to a pure enforcement framework, our system guaran-
tees that executions are policy-compliant. However, moni-
toring contract during these executions can provide a use-
ful feedback for better tuning the trust vector. Hence, our
framework also allows for a mixed monitoring and enforce-
ment configuration. This configuration is statistically acti-
vated with a certain probability. Several strategies are pos-
sible for deciding the probability to activate the monitoring
procedure, e.g., using a fixed value or a function of the cur-
rent trust level.

Note that, in the second scenario, the monitoring com-
ponent plays a central role. Indeed, a contract violation de-
notes that a trusted provider released a fake contract. The
reaction of our system to this event is an instant correction
of the trust measures.

5.1 Trust Adjustment via Contract Monitoring

We outline how trust measures assigned to security as-
sertions can be adjusted by our contract monitoring strat-
egy. Trust measures associated with an enabler are mainly

© Novatica

concerned with the contract goodness. Hence, updated trust
measures will influence future interactions with an enabler
and its applications. In other words, our system penalizes
enablers when their contracts do not specify the correct ap-
plications behaviour.

Here we present a possible extension of the monitoring/
enforcement infrastructure model proposed in [5]. The moni-
toring/enforcement infrastructure mainly consists of two
components: a Policy Decision Point (PDP) and Policy En-
forcement Points (PEPs). Roughly, the PDP holds the ac-
tual security state and is responsible for accepting or refus-
ing new actions. Actions are delivered to the PDP by PEPs
that are in charge of intercepting security-relevant opera-
tions done by the application. When the application tries to
run a monitored command, it stimulates a corresponding
PEP that suspends the execution and fires the action to the
PDP. The PDP evaluate the action against its current secu-
rity state and answers allowing or denying the permission
to proceed. Finally the PEP enforces the PDP decision by
running or aborting the operation under analysis.

In our system the PDP is also responsible for the con-
tract monitoring operations and for the trust vector updat-
ing.

According to [4][5], we assume that both contracts and
policies are specified through the same formalism. Hence,
the policy enforcement configuration of the PDP remains
unchanged. The PDP must load connector contracts as well
as local private security policies dynamically. Moreover, it
must be able to run under three different execution scenarios
(Figure 6): policy enforcement enabled, contract monitor-
ing enabled or both.

UPGRADE vol. x1, No. 1, February 2010 49

Identity and Privacy Management

I e e e
. Check ves | Update |4
CEF””;E | Contract Trust |
. n Vinlation Vactor |
i f
'] W
1]
i Y]
i Update Turm oft |*
i Kanitor Contract | *
' State Maonitar :
]
i []
1 1]
1 L [}
L {cantinue |y Soner |-
o Viokation | !
1]
1 (]
i & [}
' | Raize !
L]
* Securty YES i .
. [Excapiion v .

Figure 7: Mixed Enforcement/Monitoring Strategy.

The base enforcement scenario (execution scenario 1) is
actually unchanged w.r.t. the standard usage of the classical
PDP. Hence, no contract monitoring or trust management
operations are involved.

The main interest resides in the other two scenarios. The
contract monitoring scenario applies to application carry-
ing a contract released by a trusted enabler (Section 5.1).

Similarly to the policy enforcement strategy, PEPs send
action signals to the PDP. An important difference is that
the PDP keeps in memory the program events trace. When a
signal arrives, the PDP checks whether it is consistent with

the monitored contract. If the contract is respected then the
internal monitoring state is updated and the operation is
allowed. Otherwise, if a violation attempt is detected, the
PDP reacts by changing its state.

The first consequence of a contract violation is a de-
crease of the trust weight of the involved enabler.

Secondly, the PDP switches its state from contract moni-
toring to policy enforcement configuration. Since an in-
stance of the policy is always present, this operation does
not imply a serious computational overhead. Afterwards,
the policy state is updated using the execution trace recorded

Figure 8: Pure Monitoring Strategy.

50 UPGRADE vol. xI, No. 1, February 2010

1
Check Update |

i
cé'f::f’ | Contract YES Trust |
! Vielation ector |
i L]
! NO [
1 L]
. L 4 .
1 Update Turr off | ¥
1 Maniter Contract | *
! State Maonitor | *
1 L]
i L]
i]
| ¥
i (]
| Continue b P
1 |Execution Wi m';y [
X inlation |
1]
1 (]
i N [
' Rae :
1 - YES o L]
—] Security | YN bt ;
, [Exceptian v .

© Novatica

Identity and Privacy Management

during the monitoring phase. This step, that can be time
consuming, is necessary for verifying whether, breaking the
contract, the application has also violated the policy. How-
ever, this computational cost, being the consequence of an
extraordinary event, must be paid at most once. Indeed, when
the PDP is both monitoring a contract and enforcing a policy,
the current policy state is known. Finally, the execution con-
tinues with the PDP enforcing the policy starting from the
last action, that is the event breaking the contract.

Figure 7 and Figure 8 show the behaviour of the moni-
tor/enforcement infrastructure performing the contract moni-
toring task in the two previously discussed scenarios. Sum-
ming up, both execution scenario 2 and 3 check contract
violations through the contract monitoring strategy de-
scribed above and update enablers trust level. Such updates
will influence future interactions with applications and ena-
blers.

In this way our system gains experience and refines its
interactions with enablers by ignoring applications coming
from malicious enablers. Moreover, the executions are al-
ways kept safe by the security enforcement infrastructure.

6 Related Work

There does not exist in literature a lot of work on possi-
ble extension of the Security-by-Contract paradigm for deal-
ing with trust and, in particular, that integrates policy en-
forcement and trust management, especially for mobile code.

An attempt at integration of trust management and fine
grained access control in Grid Architecture can be found in
[8] where is proposed an access control system the enhances
the Globus toolkit with a number of features. This copes
with the fact that access control policies and access rights
management becomes one of the main bottlenecks using
Globus for sharing resource in a Grid architecture. This line
of research [9] presents an integrated architecture, extend-
ing the previous one, with an inference engine managing
reputation and trust credentials. This framework is extended
again in [10] where a mechanism for trust negotiating cre-
dentials is introduced to overcome scalability problem. In
this way the framework provided preserves privacy creden-
tials and security policy of both users and providers. Even
if the application scenario and the implementation is differ-
ent, the basic idea of considering the trust as a metrics for
deciding the reliability of an application holds.

Also [11] presents a reputation mechanism to facilitate
the trustworthiness evaluation of entities in ubiquitous com-
puting environments. It is based on probability theory and
supports reputation evolution and propagation. The pro-
posed reputation mechanism is also implemented as part of
a QoS-aware Web service discovery middleware and evalu-
ated regarding its overhead on service discovery latency.
On the contrary, our approach is not a probabilistic. We pro-
vide a method according to how we update the level of trust
of an application provider.

7 Conclusion and Future Work
Here we have investigated using the Security-by-Con-

© Novatica

tract paradigm for enforcing private policy in a communi-
cating system composed by several components that ask to
communicate with each other. Firstly, we have investigated
the possible threat models of the system and then we showed
an application of SxC for establishing a secure communi-
cation among components of a network by guaranteeing
that the application for communication is secure, i.e., it
works according the security policies required by compo-
nents.

Secondly, we afterwards extended the SxC approach for
managing trust measures by exploiting a contract monitor-
ing procedure. Furthermore, we showed how this extension
is useful for the considered system in which several actors
are involved and measuring trust could be needed.

Many future directions are viable. Indeed we aim to adapt
both the SxC and the SXCxT paradigms to all possible threat
models that we pointed out in the introduction.

Furthermore, our trust management strategy is still
mainly a work in progress. Currently, trust weights can only
decrease monotonically as a consequence of contract viola-
tions with the only exception of a direct intervention of the
user, see e.g., [12].

Moreover, quantitative representation of this adjustment
we consider to present in the future work.

Acknowledgements

Work partially supported by EU project FP7-231167 CON-
NECT (Emergent Connector for Eternal Software Intensive Net-
worked Systems) and by the EU project FP7-214859 Consequence
(Context-aware data-centric information sharing).

References

[1] N. Dragoni, F. Martinelli, F. Massacci, P. Mori, C.
Schaefer, T. Walter, and E. Vetillard. "Security-by-Con-
tract (SxC) for software and services of mobile sys-
tems". In At your service - Service-Oriented Comput-
ing from an EU Perspective. MIT Press, 2008.

[2] G. Costa, N. Dragoni, A. Lazouski, F.Martinelli, F.
Massacci, and |.Matteucci. "Extending security-by-
contract with quantitative trust on mobile devices". In
IMI1S°10: Proceedings of the 4th International Work-
shop on Intelligent, Mobile and Internet Services in
Ubiquitous Computing, 2010. To appear.

[3] N. Dragoni, F. Massacci, and K. Naliuka. "Security-
by-contract (SxC) for mobile systems or how to
download software on your mobile without regretting
it". Position Papers for W3C Workshop on Security
for Access to Device APIs from the Web, December
2008.

[4] A. Castrucci, F. Martinelli, P. Mori, and F. Roperti. "En-
hancing java me security support with resource usage
monitoring”. In ICICS, pages 256-266, 2008.

[5] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T.
Walter. "Runtime monitoring for next generation java
me platform". Computers & Security, July 2009.

[6] L. Desmet,W. Joosen, F. Massacci, P. Philippaerts, F.
Piessens, I. Siahaan, and D. Vanoverberghe. "Security-

UPGRADE vol. X1, No. 1, February 2010 51

Identity and Privacy Management

by-contract on the .net platform”. Volume 13, pages
25-32, Oxford, UK, 2008. Elsevier Advanced Tech-
nology Publications.

[7]1 P. Greci, F. Martinelli, and 1. Matteucci. "A framework
for contract-policy matching based on symbolic
simulations for securing mobile device application”.
In ISOLA, pages 221-236, 2008.

[8] H. Koshutanski, F. Martinelli, P. Mori, L. Borz, and A.
Vaccarelli. "Afine grained and x.509 based access con-
trol system for globus"”. In OTM, pages 1336-1350.
Springer, 2006.

[91 M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and
A. Vaccarelli. "Fine grained access control with trust
and reputation management for globus". In OTM Con-
ferences (2), pages 1505-1515, 2007.

[10] H. Koshutanski, A. Lazouski, F. Martinelli, and P. Mori.
"Enhancing grid security by fine-grained behavioral
control and negotiation-based authorization". Int. J. Inf.
Sec., 8(4):291-314, 20009.

[11] J. Liu and V. Issarny. "An incentive compatible reputa-
tion mechanism for ubiquitous computing environ-
ments". Int. J. Inf. Secur., 6(5):297-311, 2007.

[12] S. Nagvi, P. Massonet, B. Aziz, A. Arenas, F. Martinelli,
P. Mori, L. Blasi, and G. Cortese. "Fine-Grained Con-
tinuous Usage Control of Service Based Grids - The
GridTrust Approach”. In ServiceWave ’08: Proceed-
ings of the 1st European Conference on Towards a Serv-
ice-Based Internet, pages 242-253, Berlin, Heidelberg,
2008. Springer-Verlag.

52 UPGRADE vol. XI, No. 1, February 2010

© Novatica

