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We analyze the spectrum of a neutral donor located inside or outside of a finite-barrier toroidal-shaped nanor-
ing whose radius is much larger than the height. We derive a one-dimensional wave equation which describes
the low-lying donor levels corresponding to the slow electron motion along the ring, by using the adiabatic ap-
proximation. Numerical solution of this equation has been obtained by using the trigonometric sweep method.
The dependence of the energy spectrum on the donor position, radius and height ring has been studied.
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I. INTRODUCTION

Quasi-two-dimensional self-assembled quantum dots
(SAQDs) with different shapes but always with large base
radius-height aspect ratio have been fabricated in the last
decade by solid-source molecular-beam epitaxy, using the
Stransky-Krastanov growth mode. A possibility of growing
of self-organized InAs ring-like dot resembling a “volcano”,
with typical sizes: 60-140 nm in outer diameter and 2nm
in height, has been reported in Refs. [1, 2]. Reduction of
the dimensionality up to one within a very narrow nanoring,
allow us, on the one hand, to modify essentially the energy
spectrum of the particles confined within the heterostructure
making it more stable and, on the other hand, to use simple
theoretical models and similar methods to those applied
recently to solve exactly the problem of two electrons in
one-dimensional nanoring [3]. Analysis of these models
allows us to observe clearly the transformation of the energy
spectrum from rotor-vibration one to another Wigner crystal,
provided by the strong competition between the kinetic
energy and Coulomb interaction terms in Hamiltonian.

A most simple few-particle system for which one can ob-
serve clearly such transformation presents a neutral donor, D°
located within or outside of a very narrow ring. Previously,
the ground state energy of the shallow donors located in dif-
ferent parts of a quantum ring (QR) with rectangular cross
section has been calculated in Ref. [4] by using a variational
procedure. A detailed study of the ground state energies of
on-and off-axis neutral and negatively charged donors in ax-
ially symmetrical quantum dots with large base radius-height
aspect ratio has been presented recently in Ref. [5]. Both in
Ref. [4] and Ref. [5] a variational procedure has been used
and the donor excited states have not been considered. In this
paper we propose a simple method based on the adiabatic ap-
proximation for calculating the low-lying energy levels of the
off-axis D° in a narrow toroidal-shaped nanoring and to ana-
lyze the quantum-size effects related to this part of the energy
spectrum.

II. THEORY

We consider a model of toroidal-shaped QR generated by
the revolution of a cross section radius R; around z axis (Fig.

1). The circle is centered at the media distance R, from the
axis. It is supposed that the donor is located at the symme-
try plane and its position is given by the distance & from the
axis. The confinement potential due to the conduction band
discontinuity in the junctions of QR is given in cylindrical co-
ordinates by the piecewise constant function V (p,z) which is
equal to zero within the torus and equal to V}y outside of it.
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FIG. 1: Schematic representation of the QR model.

Initially, for heuristic purposes, we consider the case of
a very narrow QR (R, —0; Vo — o0 RtQVO — const), for
which the renormalized Hamiltonian (multiplied by squared
ring radius) for a off-axis donor in the effective mass approx-
imation, can be written as:
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Here we use the effective atomic units, in which the effec-
tive Rydberg Ryx = m* ¢*/2h?¢? and the effective Bohr ra-
dius ag* = €h? /m e*are taken as the energy and length units,
respectively. The eigenvalues E,, of the renormalized Hamil-
tonian (1) are measured in units ofRy * ag*°.

One can see that for small ring radii R, the term of the
kinetic energy in the Hamiltonian (1) predominates and the
spectrum of the system in this case is similar to one of the
rigid rotor with positive energies. For large ring radii the
term of the potential energy becomes more important con-
verting the low-lying part of the energy spectrum into a set
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of the levels with negative energies and a distribution typical
for hydrogen-like shallow donor confined in one-dimensional
heterostructure. One can see that there are only two particu-
lar cases for which the Hamiltonian (1) describes a rigid rotor
independently of the ring radius: as B — 0 (on-centre donor)
and as B — oo (ring without donor). In both cases the eigen-
functions are @4, (0) = exp (+im8)corresponding to double
degenerated levels with energies:

E,=m>—2R,;; (B—0); m=0,+1,42,... )
E,=m* B—ow); m=0,4+1,%£2... @

In the intermediate case for any finite value of B the poten-
tial V¢ () in Eq. 1 is even and there are two sets of eigenfunc-
tions of the Hamiltonian given by the even and odd functions
respectively. The even functions always give the lower ener-
gies than corresponding odd functions due to the smaller av-
eraged separation between electron and donor. The splitting
between even and odd levels decreases as f — 0 or f — oo
and the corresponding wave functions transform into linear
combinations of the rigid rotor degenerated eigenfunctions,
©+(0) +¢_(6) and @, (6) — @_ (8), respectively. On the
other hand, the splitting between even and odd levels increases
drastically as the donor approaches to the ring (f — 1) due to
the fact the odd states become unstable and their energies tend
sharply to —oo.

One can see that for B = Ithe confining potential given by
Eq. 1,Vc(8) =R,/ | sin®/ 2| is similar to a hypothetical model
of the one-dimensional hydrogenic atom, V¢ (6) = 2R, /6],
with periodic conditions. It is well known that the energies
of the even states of the one-dimensional hydrogenic atom are
given by the same relation that of three-dimensional hydro-
genic atom:

En=—-R:/m* B—1); m=123,... @3

For a narrow but finite thickness ring the renormalized
Hamiltonian of donor can be written as:

where U, (p,Z,0) is the electron-donor interaction potential
given by

U (p,Z,0) = —2Ra/\/22+ﬁ2+B2 —2Bpcos®  (5)

Doing p = 1 + % one can see that for very narrow rings
(Ri /R4 << 1) the electron location is restricted by the condi-
tions: X << 1; Z << 1. It means that the motion in the radial
and zdirections is rapid whereas the rotation along the ring is
slow and the standard adiabatic approximation procedure can
be used in order to separate the slow motion corresponding to
the low-lying energy levels from the rapid motions. It can be
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shown that the consistent application of the adiabatic approx-
imation to the Hamiltonian (4) provides the one-dimensional
wave equation for slow motion along the ring which coincides
completely with the equation (1) with the only difference, the
effective potential of the Coulomb interaction V¢ (0) in Eq. 1
should be substituted by

z° 2r
rfO2 (r)dr
0 0

Ve () = doU, (1+rcos@, rsing,8) (6)

where f (r) is the well known ground state wave function for
the electron in two-dimensional circular quantum well of the
radius R, and the barrier height Vj, which is expressed in terms
of the Bessel functions.

III. RESULTS

The relations (2) and (3) were used to check the calculation
results for the low-lying energies in a narrow ring. The effec-
tive potential of the Coulomb interaction given by the relation
(6) for R, = 20,04 and R, = 2,004, and some different val-
ues of B are shown in Fig. 2. As B tends to zero or infinity
the behavior of the curves is similar (V = const). For inter-
mediate values of B the curves of the potential has only one
minimum corresponding to & = 0 which becomes more and
more profound as f — 1.
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FIG. 2: Effective periodic potential curves V¢ (8) (—T < 8 < T) given
by the relation (6) for different values of f.

Calculation results of the renormalized energies as a func-
tion of the distance from the donor position to the axis (&)
for some low-lying levels corresponding to odd wave func-
tions, are presented in Figs. 3 y 4, for R, = 10,0a0* and
R, = 20,0ap*, respectively. Dashed lines in these figures
correspond to one-dimensional ring (R; = 0,0) calculated ex-
actly from the Hamiltonian (1) whereas the solid and dotted
lines correspond to the rings with the finite cross section radii
R; = 1,0ap*xandR; = 2,0ag*, respectively.
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FIG. 3: D° low-lying renormalized energies as a function of the
distance from the donor position to the axis of the ring with radius
R, = 10,0a0* and different cross section radii R;.

It is seen that qualitatively the behavior of the curves for
different R, is similar, only the curves becomes smoother as
the cross section radius increases. Also one can see that quan-
titatively the renormalized energies are in a good concordance
with the simplified theoretical one-dimensional model given
by the Hamiltonian (1). For the on-center donor (f = 0,0) the
positions of the energy levels on the extreme left side of Fig-
ures 3 and 4 coincide exactly with the renormalized energies
given by the relation (2).
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FIG. 4: Identical to Fig. 3, but R, = 20, 0ag*

With displacement of donor from the axis to the center QR
as the parameter 3 increases from 0 to 1, the energies decrease
and tend to minimum values which coincide almost exactly
with those given by the relation (3). As the parameter 3 further
increases from 1 to infinity the energies become to grow and
they tend on the right-side of Figs. 3 and 4 to the values given
by the second relation (1).
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The dependence of the renormalized energies of the four
low-lying levels of the donor located at the center of the QR
(& = R, = 20,0a0+) on the cross section radius R; is shown in
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FIG. 5: D low-lying renormalized energies as a function of the QR
cross section radius for R, = 20,0a¢+ and B=1,0.

Fig. 5. One can compare these values with those of the one-
dimensional hydrogen-like atom given by the relation (3). As
sen®/2 > 0/2 there is an excellent concordance for the ground
state energy, but this approximation is very poor for excited
states. In spite of the difference between two models related
to periodic frontier conditions in the case of donor in QR the
coincidence of the ground state energy shows a similitude of
these two one-particle problems. Separation between the elec-
tron and donor grows with increasing of the ring cross section.
Therefore, all energy levels in Fig. 5 climb as R; increase. Fur-
ther, as R; reaches the Bohr radius the energy growing ceases
and they become almost independent of R;.

In conclusion we propose a simple method based on the
adiabatic approximation for calculating the energies of the
low-lying levels of the off axis donor in a narrow quantum
ring. In spite of many technological, we believe that semi-
conductor nanorings remain interesting to be exploited in the:
telecommucication industry, high-electron mobility transistor
(HEMT), free-space microwave transmission, quantum op-
tics, quantum computing, semiconductor spintronics, etc.
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