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Quantum Transport of Electrons Through a Parallel–Coupled
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In this article we study the electronic transport through a triple quantum–dot molecule parallel–coupled to
leads under a magnetic field. Analytical expressions are obtained for both the conductance and total density of
states for the molecule in equilibrium at zero temperature. As a result of quantum interference of resonances
belonging to different channels, this configuration exhibits bound states in the continuum (BICs). We examine
the broadenings of the molecular states around the conditions under which BICs occur, finding long–lived states
extremely robust under variations of the magnetic flux.
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I. INTRODUCTION

A distinctive feature of electron tunneling through quan-
tum dots is the retention of the quantum phase coherence. For
this reason, multiple connected geometries involving quan-
tum dots exhibit quantum interference effects. Several works
have been concerned with the study of transmission through
a double quantum dot molecule embedded in an Aharonov–
Bohm interferometer[1–5]. This system is characterized by
the formation of a tunable Fano resonance in the conductance
spectrum. This resonance is associated to a long–lived mole-
cular state, where the lifetime is controlled by the magnetic
field. For specific values of the magnetic flux, this molecular
state becomes totally uncoupled from the leads[3, 6], and a
“bound state in the continuum” (BIC) is formed. This state
immersed in a continuum is the result of the interference of
resonances belonging to different channels. These states were
early predicted by von Neumann and Wigner[7]. Much later,
BICs were studied in the context of atomic and molecular
physics[8] and more recently in mesoscopic systems[9].

In this article we study the electronic transport through
a parallel triple quantum–dot molecule embedded in an
Aharonov–Bohm interferometer connected symmetrically to
leads. We focus our analysis in a particular set of values of
the dot–lead couplings, where two BICs can occur simultane-
ously. We obtain analytical expressions for the conductance
and total density of states, and we explore them as a function
of the magnetic flux to demonstrate that different regimes of
transmission can be reached. The conductance displays one
Breit–Wigner and two Fano resonances at the energies of the
molecular states, and with a period of two flux quanta, the
roles of the antibonding and bonding states are interchanged
in the transmission spectrum. The simultaneous BICs occur
when the magnetic flux is a multiple of 2Φ0, but in a wide
range around this value the pair of states keeps very weakly
coupled to the leads. Approximate expressions of the line
broadenings of the molecular states are given, as functions of
the Aharonov–Bohm phase.

II. MODEL

FIG. 1: Triple quantum dot molecule coupled in parallel to leads.

We consider three single–level quantum dots forming a
triple quantum dot molecule coupled in parallel to two leads,
as shown in Fig.1. The system is modeled by a noninteracting
Anderson Hamiltonian, which can be written as

H = Hm +Hl +HI , (1)

where Hm describes the dynamics of the isolate molecule,

Hm =
3

∑
i=1

εid
†
i di− t(d†

1d2 +d†
2d1)− t(d†

2d3 +d†
3d2), (2)

where εi is the level energy of dot i, di (d†
i ) annihilates (cre-

ates) an electron in dot i, and t is the interdot tunneling cou-
pling. Hl is the Hamiltonian for the noninteracting electrons
in the left and right leads

Hl = ∑
k∈L,R

εkc†
kck, (3)

where ck (c†
k) is the annihilation (creation) operator of an elec-

tron of quantum number k and energy εk in the contact L or
R. The term HI accounts for the tunneling between dots and
leads,

HI =
3

∑
i=1

∑
k∈L

V L
i d†

i ck +h. c.+
3

∑
i=1

∑
k∈R

V R
i d†

i ck +h. c.

(4)
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with V L(R)
i the tunneling matrix element connecting the i−

th dot with the left (right) lead, assumed independent of k.
For simplicity, we assume that the magnitudes of these matrix
elements are such as |V L

1 |= |V R
1 | ≡V1, |V L

2 |= |V R
2 | ≡V2, and

|V L
3 | = |V R

3 | ≡ V3. In presence of a magnetic field, and in the
symmetric gauge, the tunnel matrix elements can be written
in the form

V L
1 = V1e−iφ/4, V R

1 = V1eiφ/4,

V L
2 = V R

2 = V2,

V L
3 = V3eiφ/4, V R

3 = V3e−iφ/4, (5)

with φ = 2πΦ/Φ0, the Aharonov–Bohm phase, where Φ0 =
h/e is the flux quantum.

The linear conductance at zero temperature is given by the
Landauer formula

G =
2e2

h
T (εF), (6)

where T (ε) is the total transmission. To obtain G explic-
itly we use the equation of motion approach for the Green’s
functions[10]. The transmission can be expressed in terms of
the retarded and advanced Green’s functions Gr/a(ε) as

T (ε) = tr{Ga(ε)ΓRGr(ε)ΓL}, (7)

where Gr(ε) is defined by

Gr
i j(t) =−iθ(t)〈{di(t),d

†
j (0)}〉, i, j = 1,2,3, (8)

with θ(t) the step function. Ga(ε) is given by Ga
i j = [Gr

ji]
∗,

and Γ L,R are matrices describing the coupling between the
quantum dots and the left and right leads, the matrix elements
of which are

ΓL(R)
i j = 2π∑

k
V L(R)

ik [V L(R)
jk ]∗δ(ε− εk), i, j = 1,2,3. (9)

With the use of Eq. (5), Γ L,R can be written as

Γ L,R =




γ11 e∓iφ/4γ12 e∓iφ/2γ13
e±iφ/4γ21 γ22 e∓iφ/4γ23
e±iφ/2γ31 e±iφ/4γ32 γ33


 , (10)

with γi j ≡ ΓL
i j = ΓR

i j, where ΓL,R
i j are obtained from (9) for zero

magnetic flux.
The electronic properties of the configuration can be stud-

ied from the total density of states, given by

ρ(ε) =
3

∑
i=1

ρi(ε) =−1
π

3

∑
i=1

ImGr
ii(ε), i = 1,2,3, (11)

where Gr(ε) is the retarded Green’s function.
Hereafter we assume ε1 = ε2 = ε3 ≡ ε0. We make the fol-

lowing transformation of the quantum-dot operators

d̄1 =
1
2
(d1 +

√
2d2 +d3),

d̄2 =
1√
2
(d1−d3),

d̄3 =
1
2
(d1−

√
2d2 +d3), (12)

so that the Hamiltonian of the isolated molecule becomes di-
agonal

H̄m = (ε0 +
√

2t)d̄†
1 d̄1 + ε0d̄†

2 d̄2 +(ε0−
√

2t)d̄†
3 d̄3, (13)

and the Hamiltonian describing the coupling between the
molecule and the leads takes the form

H̄I =
3

∑
i=1

∑
k∈L

V̄ L
i d̄†

i ck +h. c.+
3

∑
i=1

∑
k∈R

V̄ R
i d̄†

i ck +h. c.,

(14)

where

V̄ L,R
1 =

1
2
(V L,R

1 +
√

2V L,R
2 +V L,R

3 ),

V̄ L,R
2 =

1√
2
(V L,R

1 −V L,R
3 ),

V̄ L,R
3 =

1
2
(V L,R

1 −
√

2V L,R
2 +V L,R

3 ). (15)

Eqs. (5)-(15) give us interesting insight into the transmission
properties of the molecule. It is observed that for some spe-
cific values of the magnetic flux and the dot–lead matrix el-
ements, the coupling between one or more molecular states
with the leads may vanish, giving rise to the formation of a
BIC. In particular, if V1 = V3,

V̄ L,R
1 = 2V1 cos

φ
4

+
√

2V2,

V̄ L,R
2 = ∓i

√
2V1 sin

φ
4
,

V̄ L,R
3 = 2V1 cos

φ
4
−
√

2V2. (16)

So that when φ = 4nπ (n integer), the matrix elements between
the molecular state 2 and the left and right leads, V̄ L,R

2 , cancel
and such a state becomes a BIC. If it also occurs that V1 = V2,
and n is an odd multiple of π, V̄ L,R

2 6= 0 but either V̄ L,R
1 or V̄ L,R

3
vanish, occurring again a bound state in the continuum. On
the other hand, we can see of Eq. (16) that if V1 = V3 and
V2 =

√
2V1, two BIC’s are simultaneously formed when φ =

4nπ: one in the state 2 (ε = ε0), and other either in state 1 (ε =
ε0−

√
2t) or 3 (ε = ε0 +

√
2t), depending on the parity of n. In

a parallel double quantum dot molecule, a seemingly simpler
condition gives rise to one BIC, which is formed whenever
φ is a even multiple of π (that is, Φ = nΦ0, n integer)[3, 6].
Notice that BICs occur for an infinite number of combinations
of dot–lead couplings and Aharonov–Bohm phases, but for
simplicity in what follows we focus in the case in that V1 =
V3 ≡V and V2 =

√
2V .

III. CONDUCTANCE AND DENSITY OF STATES

When V1 = V3 = V and V2 =
√

2V the linear conductance
reduces to

G =
2e2

h
4γ2[(t +

√
2εcos φ

4 )2− t2 cos φ
2 ]2

D1(ε)D2(ε)
. (17)
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where

D1(ε) = ε2 + γ2(1− cos
φ
2
)2 (18)

and

D2(ε) = (2t2− ε2)2 + γ2[4
√

2t cos
φ
4

+ ε(3+ cos
φ
2
)]2 (19)

Figure 2 shows the conductance spectrum for different val-
ues of the Aharonov–Bohm phase. For φ = 0 (Fig.2(a))
the conductance exhibits a single resonance around the an-
tibonding energy, which indicates that transmission through
the other two molecular states has been suppressed, and such
states are bound states in the continuum. This is consistent
with Ecs. (16), which show that both V̄ L,R

2 and V̄ L,R
3 can-

cel whenever φ = 8nπ (n integer). The equations show also
that the roles of the bonding and antibonding states are in-
verted every 4π, and that the antibonding and the molecu-
lar state of intermediate energy both collapse to BIC’s when
φ = 4π(2n−1) (n integer).

FIG. 2: Dimensionless conductance versus Fermi energy, in units
of γ, for V1 = V3 = V , V2 =

√
2V , t = 2, a) φ = 0 (solid line) and

φ = π/5 (dash line), b) φ = 3π/4, c) φ = π (solid line) and φ = 6π/5
(dash line), d) φ = 2π, and ε0 = 0.

For arbitrary values of the Aharonov–Bohm phase the spec-
trum presents three resonances, and a number of Fano antires-
onances that oscillates between two and zero. From Eq. (17)
we note that the conductance is zero at

ε =
−√2t[1±

√
cos(φ/2)]

2cosφ/4
, (20)

where we see that when (4n−1)π < φ < (4n+1)π (n integer)
there are two antiresonaces, as shown by Fig. 2(b) where φ =
3π/4. When φ = nπ (n odd) only one point of zero conduc-
tance exists, as observed in (c). For (4n−3)π < φ < (4n−1)π
(n integer) the numerator of Eq. (17) is complex and the con-
ductance does not exhibit antiresonances (Figs. (c), dashed
line, and (d)). In (d) G(ε) is symmetrical around ε = 0, and
has the form

G =
2e2

h
16γ2t4

(4γ2 + ε2)(4t4−4(t + γ)(t− γ)ε2 + ε4)
,

FIG. 3: Density of state versus Fermi energy, in units of γ, for V1 =
V3 = V , V2 =

√
2V , t = 2, a) φ = 0, b) φ = 3π/4, c) φ = π and d)

φ = 2π, for ε0 = 0.

FIG. 4: Broadenings of the molecular states Γ−, Γ0 and Γ+ as a
function of φ, for V1 = V3 = V , V2 =

√
2V and t = 2.

which corresponds exactly to the conductance of a triple quan-
tum dot molecule connected in series. It is interesting to note
that if the dots are not coupled directly, that is, t = 0, the trans-
mission is suppressed for all energies (perfect reflector). An
analogous result is found in two parallel quantum dots in pres-
ence of a magnetic field. This situation never occurs in the
triple molecule when the dot–lead couplings are equal.

The total density of states is given by

ρT =
γ
π

[8
√

2tεcos φ
4 +(2t2 + ε2)(3+ cos φ

2 )]

(2t2− ε2)2 + γ2[4
√

2t cos φ
4 + ε(3+ cos φ

2 )]2

+
γ
π

2sin2 φ
4

ε2 +4γ2 sin4 φ
4

. (21)

In the range 2(4n−3/8)π≤ φ≤ 2(4n+3/8)π (n integer), ρT
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can be approximated by a sum of Lorentzians of the form

ρT ≈ C
π

[
Γ−

Γ2−+(ε− ε−)2 +
Γ+

Γ2
+ +(ε−√2t)2

]
+

+
1
π

Γ0

Γ2
0 + ε2

, (22)

where

ε− =
−4
√

2t(2t2 + γ2 cos(φ/4)[3+ cos(φ/2)])
(8t2 + γ2[3+ cos(φ/2)]2)

,

C =
4cos4 φ

4

3+ cos φ
2

(23)

and the broadenings are given by

Γ− = 8γ
t2 sin4 φ

8

2t2 + γ2(1+ cos2 φ
4 )2

Γ0 = 2γsin2 φ
4

and Γ+ = 4γcos4 φ
8

(24)

Figure 3 shows ρT for the same parameters of Fig.2. In
figure Fig.3(a), where φ = 0, the density of states is the su-
perposition of two Dirac delta’s localized at ε = ε− and ε = 0
(corresponding to the BIC’s) plus a Lorentzian at ε = ε+ with
width 4γ. When φ = 2π, as in (d), the density of states corre-
spond to that of a triple molecule connected in series.

Figure 4 displays the broadenings Γ−, Γ0 and Γ+ as a func-
tion of φ, for t = 2, in the range of validity of Eqs. (24).

The top plot shows the BIC formed at the bonding state
when φ = 0 and the robustness of such a long–lived state
against variations of the magnetic field. Notice that Γ− re-
mains smaller than 0.02 in all the range of φ, and that is very
close to zero in a wide interval around φ = 0. For instance, for
φ ∈ (−π/3,π/3), Γ− keeps smaller than 8×10−4, that is, less
than 0.08 per cent of the level broadening of a single quantum
dot. The broadening Γ0 is more sensitive to variations of the
magnetic field than Γ−, as shown in the middle figure.

IV. CONCLUSIONS

We have investigated the electron transport through a
parallel–coupled triple quantum dot molecule in presence of a
magnetic field. For the studied case, where V1 = V3 = V and
V2 =

√
2V , different regimes of transmission are possible as

the magnetic flux is varied; if this is a multiple of 2Φ0 two
BICs simultaneous are formed, and in a wide range around
this value the two resonances keep extremely narrow.
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