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Abstract 
 

 Explosive instabilities in two uniform spatially discrete schemes for a semilinear 
parabolic equation in one space dimension are studied by intensive numerical 
simulations. We shows for both schemes that the difficulties of detecting blow-up 
phenomenons and computing or approximating blow-up solutions for such 
problem arise at least from the fact the grid spacing must be adequately chosen 
not only to ensure the similar behaviour between the obtained semidiscretization 
schemes and the continuous problem but also to ensure a suffisiant upper blow-up 
time if the continuous one exhibit a blow-up event.  
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1. Introduction  
 
Many time-dependent nonlinear PDEs that exhibit blow-up phenomenon and that 
have no known analytical solutions can be solved numerically using appropriate 
approximations in space and time. When a PDE is first discretized in space, this is  
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the notion of the method of lines (MOL) and the result is a coupled system of 
nonlinear ordinary differential equations to be solved in place of the differential 
equations. To get such ODE system, there are several schemes among them one 
can cite the finite difference, and the finite element approximations. When the 
obtained ODE system is discretized in time, the result is a set of algebraic 
equations to be solved in place of the original system. Here also there are several 
methods which can be used to discretise and solve the ODE system among them 
we can cite the Runge-Kutta, Adams-Bashford and Taylor-series expansion 
methods. To obtain accurate numerical solutions for time-dependent nonlinear 
PDEs which my present blow-up phenomenons, the time integrator is almost as 
important as the spatial approximation and should not be overlooked.  
 
    This paper is devoted to the investigation of the Runge-Kutta methods for 
solving ODE system that result from an uniform spatial discretisation with finite 
difference and finite element methods of the following one-dimensionnal 
semilinear parabolic equation 

0,,1, >∈>+= tRxpuuu p
xxt   (1) 

with the initial condition 
( ) ( ) ,,0, 0 Rxxuxu ∈=    (2) 

where ( )xu0  is continuous, non-negative and bounded.  
Parabolic equations like (1) on bounded or unbounded domain appear in several 
branches of applied mathematics. They have been used to model, for example, 
chemical reactions and heat transfer and have been studied by several authors. See 
[3] and the references therein. The local existence (in time) of positive solutions 
of (1) is followed from standard results, but the solution may develop singularities 
in finite time. In the case of flat positif initial data, the exact solution to (1) is 

      ( ) βββ −−= tTu homhom   (3) 
with an exact blow-up time 

( )( ) 11
0hom 1

−−−= pupT    (4) 
where ( ) 11 −−= pβ . Levine studied this problem for a more general positive initial 
conditions where the solutions are not a priori known and proved the following 
results [8]. Let 3=cp  be the critical Fujita exponent of (1),  
(1) When cpp <<1 , for any non-trivial solution of (1) there exists a finit time 

T such that 

( )( ) .,supsuplim +∞=⎟
⎠

⎞
⎜
⎝

⎛
ℜ∈→

txu
xTt

  

   
(2) When cpp > , then there exists a global positive solution if the initial values 

are sufficiently  
small. To be precise, for any 0>k , δ can be chosen such that problem (1) has a 
global solution whenever ( )

2

00 xkexu −≤≤ δ . 
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    We then say that ( )txu , blows up at a finit time T , which is called the blow-up 
time of u . Recall however that in the case of a finite space domain and  p<1  
there exists a global positive solution if the initial values are sufficiently small and 
a finite time blowup if the initial values are large enough. 
 
     Application of MOL to detect the blow-up phenomenon and compute or 
approximate the blow-up solutions, times and profiles, for such nonlinear 
equations leads often to much more difficulties than their linear cousins. Consequently, 
numerical algorithms for approximating their solution have been intensively studied in 
past years. For instance semi-discretization in space by  finite differences or finite 
elements leads to an initial-value problem for a system of nonlinear ODEs. Some of the 
relevant questions in this first step when we want the theoretical solution of this system to 
display the properties of the blow-up phenomenon are the realisation of the possible 
truncation of the infinite domain to a finite domain [ ]LL,− , the choice of fixed or 
adaptive spatial mesh to fit the expected qualitative behavior, and in a more theoretical 
direction the analysis of convergence. Once the ODE system is obtained, the next step is 
to discretize the time variable. Others relevant questions when we want the get a good 
computational solution are the choice of temporal mesh, the choice of time integrator, and 
also the analysis of convergence. 
 
     In [10] the auhor introduce some totally discrete explicit and semi-implicit Euler 
methods and suggest an adaptive in time step procedure to deal with equation (1) in a 
bounded spatial domain. Recall that Euler’s method is a first-order Runge-Kutta method. 
Here we shall propose two stage variable step explicit high-order Runge-Kutta methods 
(blow-up detection and localisation stages) in order to speed the computational of the 
discrete solution and to reproduce the properties of the continuous one especially when 
the time t approaches the blow-up time T . Next, we shall check by numerical simulation 
on uniform spatial meshes whether the classical second order central finite difference 
spatial discretization scheme [1], CSD,  and the modified finite element spatial 
discretization scheme [11], MSD,  used in conjunction with variable step Runge-Kutta 
integrators are efficients to reproduce the asymptotic behaviour of the continuous 
solutions. This work is motivated by the fact that for the CSD , the difficulties 
arise at least from the fact the grid spacing must be adequately chosen not only to 
ensure the similar behaviour between the obtained semidiscretization scheme and 
the problem (1) but also to ensure a suffisiant upper blow-up time if (1) exhibit a 
blow-up event.  
 
 
     The structure of this paper is as follows. In section 2, the proposed Runge-
Kutta methods used to solve the studied problem are presented. In section 3, 
numerical experiments with various initial conditions for the considered problem 
are reported and compared both from a computational point of view and 
efficiency. Finally, we summarise our conclusions.  
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1. The numerical methods  
 
Application of the considered numerical methods on problem (1) requires 
truncation of the infinite interval to a finit interval [ ]LL,− . For the numerical 
experiments considered, the constant L must be chosen suffisantly large so that 
the boundary conditions do not considerably affect the solution behaviour of the 
continuous problem. Hence, the problem (1-2) may be rewritten as follows 

( ) [ ]
( ) [ )
( ) ( ) [ ]⎪

⎩

⎪
⎨

⎧

−∈=
∈=±

>−∈<+=

,, 0,
,T0,      0,

,0,, ,1             ,

0 LLxxuxu
ttLu

tLLxpuusuu xxt

  (5) 

where ( )
pyxyxs ⎟
⎠
⎞

⎜
⎝
⎛ +

=
2

, is the source term.  

 
Let N be a positive integer. The interval [ ]LL,− is divided into N equal 
subintervals with grid spacing NLh /2= . The spatial grid points are given by 

NkL
N
kxk ,...,2,1,12

=⎟
⎠
⎞

⎜
⎝
⎛ −= . The approximate solution to ( )txu k ,  is denoted by 

( )tuk . 
 
2.1 Spatial Discretizations 
The first considered classical spatial discretization scheme, CSD, is obtained 
using a second order central finite difference expression for the second order x-
derivative:                                                                                                                                                    

( ) ( ) ( ) ( )[ ] ( )( ) .1,...,2,1,2 11
2 −=++−=′ −+
− Nktutututuhtu p

kkkkk                                 (6)   
If one is interested in using (4) as a semidiscretization of the continuous equation, 
and choose a non negative solution, ( )tuk , with  

 ( )( ) .02 12 p
kuh −>   (7) 

then (6) blow up in finite time T  (see Theorem 2.1 of [1] ) where 

 ( ) ( )[ ] .021log
12

1
2

2

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=≤ − p

kb u
hp

hTT  (8) 

From a numerical point of view, (7) provides a condition on the spatial step size 
h which ensure explosive behaviour for (5). The difficulties arise here from the 
fact the choice of h is critical because the grid spacing must be adequately chosen 
not only to ensure the similar behaviour of (1) and (6) but also to ensure a 
suffisiant upper blow-up time if (1) exhibit a blow-up event. 
 
Now by substituting the transformation 

 ( )[ ] .02 1
2

2 p
ku

h
−=ε   (9) 

in (8) one can get the following useful form of the upper blow up time bound 
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 ( ) .1log
hom2

2

TTb ε
ε−

−=  (10) 

From (10) it is clear that homTTb ≥ . 
     
    In the second considered modified spatial discretization scheme, MSD, the 
spatial discretization is done by a second order nonlinear Galerkin-based method 
[11] to convert the PDEs to an ODE system :  

 

( ) ( ) ( ) ( )[ ] ( ) ( )( ) ( ) ( )( )[ ] .1,...,2,1,,,
2
12 1111

2 −=+++−=′ −+−+
− Nktutustutustututuhtu kkkkkkkk

(11) 
Yet there is no known suffisiant theoretical condition, similar to (7), that ensure a 

blow-up event. 

Let ( ) ( ) ( )( )tututuU N...10=  be the values of the solution at time t , once we discretise 

the spatial part of the PDE we get a system of ODE 

 ( ).UfU =′                                       (12) 
2.2 Time integrations  
Let ( ) ( ) ( )( )n

N
nn

n uuuU ...10=  be the values of the numerical approximation of U at time 
nt , and let nnn tt −= +1τ be the time increment. For the time-stepping we shall use the 

modified Euler method (RK2), where the solution U  of (12) is approximated by 
the solution nU of the following explicit scheme  
                                ( ).22111 mwmwUU nnn ++=+ τ                                              (13) 

where iw are weights of the slopes im at various points. We also use the classical 
fourth-order Runge-Kutta method (RK4) and the Runge-Kutta Fehlberg method 
(RKF45), where the numerical solutions are obtained from the following more 
general explicit scheme  
 ( )443322111 mwmwmwmwUU nnn ++++=+ τ .         (14) 
Implementations of these methods using fixed and variable time step for different 
languages are given in [7]. Here we shall limit ourself to variable-time-step 
methods since it is well known in the theory of numerical integration of 
differential equations that fixed-time-step methods are inefficient, [4,5]. In fact, as 
the blow-up time is approached, the derivative drastically increases and thus 
smaller and smaller time-steps are required in order to capture the solution with 
sufficient resolution. The Runge-Kutta implementations of [7] are however of 
general use and can’t fit the expected qualitative behaviour. We shall then propose 
two stage variable step explicit high-order Runge-Kutta methods (blow-up 
detection and localisation stages) in order to speed the computational of the 
discrete solution and to reproduce the properties of the continuous one especially 
when the time t approaches the blow-up time T .  
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        In the first stage, we are concerned with the blow-up detection event where 
we use a slightly modified implementation of [7]. The numerical solution is 
calculated on an uniform time grid ,...2,1,0, =Δ= mmt using one of the three 
considered variable step integrators, and at each iteration, these integrators uses 
the latest obtained variable time step 

mnτ as an initial integration step to perform 
the new iteration. The truncation error is estimated along the solution to adjust the 
integration step according to aspacified error tolerance. More precisely, if an error 
violation is detected, the integration will be repeated with one half the previous 
integration step to improve the accuracy of the solution. Before the next step is 
taken along the solution, thre is the possibility that the integration step could be 
increased. Thus, a test is made to determine if the estimated error for each 
dependent variable is less than 1/4 for RK2 or 1/16 for RK4 or 1/32 for the 
RKF45 of the error tolerance. If so, the integration step is doubled before the next 
step along the solution is taken. The computation stops at the thm subinterval, 

( )[ ]Δ+Δ 1, mm , when the numerical scheme within the integrator call reduce the step 
size nτ below 1610− . The numerical blow-up time detection dT  is then estimated by 

∑
−

=

=
1

0

0n

j
jdT τ . 

    In order to enhance this estimate, a localisation stage is performed. Here we 
need to adapt the size of the time step so that we take  

( )( ) .max
1

,min 1

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
− pn

iinn u
p
λττ   (14) 

The parameter λ is initially set to 1and is reduced or increased by a factor of 2 in 
the same manner as it is done for the step size nτ  in the event blow-up detection 
stage. The computation stops when the numerical scheme reduce the step size 

nτ below 1610− . The numerical blow-up time is then given by ( ) ∑
−

=

=
1

0

n

j
j

nT τ .  

 
3. Numerical experiments  
 
To examine the performance of the suggested methods we consider the three 
different problems described bellows. The true solution, when it is unknown, is 
estimated by using the well known Exponential Time Differencing fourth-order 
Runge-Kutta method, ETDRK4, with 2048=N . The error ( )uEN  is then calculated 
as the ∞-norm of the difference between the solution at lower N  and the ‘exact’ 
solution at the larger N . We also use the ETDRK4 method to verify the accuracy 
of the blow-up time estimate. The ETDRK4 is initially proposed by Cox and 
Matthews in [12], modified by Kassam and Trefetheny in [2] and successfully 
applied to problem (1-2) by de la Hoz and Vadillo in [6]. The absolute and 
relative errors in all considered Runge-Kutta methods are set to 510− and 

810− respectively,  
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while the parameter Δ is set to 210− . The error between the ‘true’ blow-up time, 
T , and the estimated one, T̂ , is calculated with the following equation:  

( ) .ˆlog10 TTTEN −=   (15) 

The purpose of the next three numerical experiments is to verify numerically for 
flat-shaped and bell-shaped initial conditions that the proposed Runge-Kutta 
methods exhibit good properties when their parameters are chosen conveniently.    
 
3.1 The flat-shaped case  
To test the solvers on homogenous solutions, we refer to the blow-up equation (1) 
with 2=p . The natural choice of ( ) 10, =xu is made. Recall from (3) that the exact 
solution to (1) is ( ) ( ) 11, −−= ttxu with exact blow-up time 1hom =T . Recall from (10) 
that we have always homTTb ≥ and for this example a suffisiant upper blow-up time 
is satifed for the CSD case.  
    The problem is first solved on the space interval 55 ≤≤− x  for times up to 

2.1=t with the RK2, RK4 and RKF45 methods. We presente in figures 1 and 2 
respectively the error ( )TEN  and the computational costs as a function of N . 
Since these numerical methods gives very similar blow-up detection times, a 
single error curve for each spatial discretisation scheme appears on figure 1. We 
observe, for the CSD or the MSD scheme, that the errors ( )TEN decrease with 
increasing N and reache a somewhat steady state for 512≥N . Clearly, it appears 
that the CSD outperform the MSD when low values of N are used but give similar 
performance when the used N is large enough. The limited obtained accuracies for 
the RK2, RK4 and RKF45 methods are due to the limited space interval 55 ≤≤− x . 
To show that the obtained accuracy can be enhanced and the steady state 
behaviour for 512≥N can be eliminated by balancing the error due to the boundary 
effects with the error due to the internal resolution, we repeat the experiments of 
figure 1 but now using the space interval 1010 ≤≤− x . The results are presented in 
figures 3 and 4 for the CSD and MSD respectively. Such increase of the spatial 
interval do not affect the observation concerning the comparison of the 
performance of the CSD and the MSD schemes, however it lead to an obvious 
enhancement in accuracy since for a given spatial discretisation scheme and for 
any fixed value of N a Runge-Kutta method applied on the space interval 

1010 ≤≤− x gives always smaller errors than a Runge-Kutta method applied on the 
space interval 55 ≤≤− x . From the point of view of accuracy, the use of RKF45 or 
RK4 method on the space interval 1010 ≤≤− x lead now to better results than that 
of RK2 method; the RK4 method slightly outperform the RKF45 at a cost of a 
relatively more time demanding; the RK2 is less efficient than the others methods 
and have always the long computation time. Finally, from a comtutationnal point 
of view, and for any fixed value of N , the use of CSD with a given Runge-Kutta 
method is always more efficient than the use of MSD with the same method. We 
have always noted that the use of RKF45 or RK4 is computationally more 
efficient than the use of  
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RK2; the RKF45 is computationally more efficient than the others algorithms and 
should be used whenever possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 The Gaussian case  
We have applied the proposed Runge-kutta methods to equation (1) with 2=p ,  
 
 
 
where the initial condition is the Gaussian function ( ) ( )2

0 20exp xMxu −= . The  
solution of this problem experience finit time blow-up. In [9], in a more general 
framework, it has been shown theoretically under the hypothesis of having a 
blowup point at 0=x , and a symmetric ( )xu0  with a single maximum at 0=x that 
the asymptotic behaviour of a solution of the problem (1) at the blow-up time 

0>T  is given by  

( ) ( )( )( )( ) ( ) ( ) .
4

11,loglim
2

2/1
β

ββ β
−

→
⎥
⎦

⎤
⎢
⎣

⎡ −
+=−⋅−−

p
zptTttTtTzu

Tt
                       (16) 

   
  This result holds uniformly on compact sets Rz ≤ with 0>R and ( ) 11 −−= pβ . 
Using the ETDRK4 method, de la Hoz and Vadillo [6] have shown numerically  
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that the blow-up for 05.6=M become pronounced near 1=t . They also showed 
that the resemblances near the origin between the obtained solution at time 

99.0=t with the estimate (16) are quite evident. The time step for the ETDRK4 
method is set to 0.001. 
 
 
    In the present study, the above problem is first solved on the space interval 

55 ≤≤− x , as in [6], for times up to 2.1=t . We presente in figure 5 and figure 6 
respectively the accuracy ( )uEN and the blow-up detection error  ( )TEN  of the 
RK2, RK4 and RKF45 methods for the time 95.0=t as a function of N . Since the 
different numerical methods gives very similar blow-up detection times, a single 
error curve for each spatial discretisation scheme appears on the graphs. Here, the 
MSD accuracy outperform the CSD one, however, they give similar performance 
when the used N is sufficiently large. For both spatial discretisation, CSD and 
MSD, we observe that the error ( )TEN tend globally to decrease with increasing 
N . In order to enhance the performance of the numerical method, it is then 
raisonnable to refine the spatial mesh, but no so mush because of the important 
increase in computational cost as it can be seen on Table 1. Here also, the RKF45 
still computationally more efficient than the others algorithms and should be used 
whenever possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Comparison between the computational cost of the Runge-Kutta methods  

for the CSD and MSD in the case of the space interval 55 ≤≤− x .   
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SD RK/N   64            128        256          512         1024       2048 
 

CSD 
RK2 
RK4 

RKF45 

39,59 61,45
 105,66
 195,31
 390,54
 923,32 
  3,56   5,43     
9,44   20,61   
69,15 367,74 
  0,30   0,69     
1,23     5,65   
36,89 279,53 

 
MSD 

RK2 
RK4 

RKF45 

49,32 81,24
 145,00
 275,63
 559,08
 1327,50 
  4,55   7,44   
13,59   30,97
 103,88   
545,16 
  0,44   0,84     
1,81     8,47   
56,24   429,40 

 
 
 
 
In the second example we have applied the proposed RKF45 method with 

256=N to the above problem in order to examine the behaviour of the obtained 
solution near the estimated blow-up times. We find that the numerical blow-up 
time is the CSD case is given by 0.992015≈hT while it is given in the MSD case 
by 0.994737≈hT . The blow-up detection in the CSD take about 1.47s while the 
blow-up affinement procedure take about 8.17s to get the blow-up time estimate. 
For the MSD case a slightly more demanding time is needed, about 1.94s for 
blow-up detection and about 9.81s for blow-up time estimation. In figure 7 we 
have drawn ( )( ) ( )tTtu h −− lg/lg 0  versus ( )tTh −− lg  for both CSD and MSD schemes. 
For the CSD scheme, we can appreciate that the curve, corresponding to 

0max uuk = , has a slop approaching 1  near the blow-up time hT . This result 
somewhat seem to be in agreement with the continuous case (see equation 16) 
where we have ( )( ) ( ) βββ −

→
−= tTtu

Tt
0lim with 1== ββpC . Note also that the blow-up 

rate appears here much more accurate for the CSD scheme than the MSD scheme. 
If one use the MSD scheme for detection the blow-up event and the CSD scheme 
for estimating of the blow-up time, better results can then be expected.  
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3.3 The behaviour at low values of N  
In the above experiments we have shown for the CSD scheme that the event of 
blow-up in finite time for the proposed numerical methods can be obtained for 
N large enough without using the condition (7). This condition appears then to be 
just a sufficient condition for the Gaussian initial condition ( ) ( )2

0 20exp xMxu −=  
and not a necessary one. When this condition is verified, the quantity 2ε  (see 
equation 9) and the like-blow-up time for homogenous solution 

( )( ) 11
hom 1

−−−= pMpT  (see 
equation (4) plays an important role in defining an upper time bound (10) for the 
numerical blow-up times. The purpose of the present numerical experiment is to 
study the effect of the CSD and MSD scheme on the numerical blow-up estimate 
for low values of N . To this end two tests were performed and in both tests the 
above problem is solved on the space interval 55 ≤≤− x for times up to st 2.1= . 
 
   We deal with the two cases ( ) ( )05.16,2, =Mp  and ( ) ( )05.6,3, =Mp . For both cases, 
we have evaluated the blow-up times resulting from using the CSD and the MSD 
in conjunction with the RKF45 method and plotted the obtained results on figures 
8 and 9. The upper time detection bound for the CSD scheme is also plotted on 
these figures. Recall that the RKF45 method use the same parameters as in the 
above experiments. It is found that the CSD and MSD schema behave differently 
for low value of N . While the numerical blow-up time, CSD

NT , for the CSD case 
increase monotonically with N , the numerical blow-up time associated to the 
MSD, MSD

NT , attaint a maximum between 24 and 32 before deacreasing 
monotonically with N . It is also found that the upper bound, bT , of the CSD case 
can’t be used as an upper bound for MSD

NT , but the blow-up time MSD
NT can be used  
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as an upper bound of CSD

NT where the time bT is not almost defined. We finally also 
note that the upper bound bT become less and less sharp for CSD

NT as N approaches 
the critical value where the condition (7) become not verified.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
4. Conclusion 
 
In this study we have applied the well known high-order Runge-Kutta methods in 
conjunction with the classical or the modified spatial discretisation scheme. We 
have presented a slightly modification to their variable time step procedure in 
order to permit the discrete solution to reproduce the properties of the continuous 
one when the time approaches the blow-up time. The numerical experiments 
indicate that these numerical methods can perform well for both the CSD or the 
MSD scheme when the parameter N is large enough. We have found however that 
it is preferable to use the MSD for blow-up detection and the CSD for producing 
the expected qualitative behaviour near the blow-up time. For low values of ,N  
the RKF45 method behave differently when used in conjunction with the CSD or 
the MSD. While the numerical blow-up time for the CSD case increase 
monotonically with N , the numerical blow-up time associated to the MSD pass 
by a maximum between 24 and 32 before deacreasing monotonically with N . We 
have also observed that the upper bound of the CSD case can’t be used as an 
upper bound for the CSD case. We heve also noted that the upper bound 

bT become less and less sharp as N approaches the critical value where the 
sufficient blow-up condition become not verified. 
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