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Abstract

In this article, variational iterative method (VIM) is presented as an alter-
native method for solving the linear and nonlinear Klein Gordon equations.
The method is demonstrated by several physical models of Klein Gordon
equations. The present approach is highly accurate and converges rapidly.
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1 Introduction

In 1999, the variational iterative method (VIM) was first time proposed by J.H.He
[1 − 10]. Recently, this method is used by many researchers to study linear and
nonlinear ordinary, partial and integral equations. This method is more powerful
than existing techniques such as ADM [11 − 20] and perturbation etc. The present
technique require no restrictive assumptions that are used to handle nonlinear terms.

The VIM does not require specific transformation for nonlinear terms as required
by other techniques. Our aim in this article is to apply VIM to find the exact
solutions for Klein Gordon equations which has attracted much attention in studying
solitons and condensed matter physics, investigating the interaction of solitons in
collisionless plasma, quantum mechanics, relativistic physics, dispersive phenomena,
the recurrence of initial state, and examining the nonlinear wave equations.

2 He’s variational iterative method

To illustrate variational iterative method (VIM), we consider the general nonlinear
equation
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Lu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), (1)

where L is linear operator R, is the remaining linear operator, Nu(x, t) represents
a general non-linear operator and g(x, t) is source term. According to VIM [1− 10],
a correction functional can be constructed as follow

un+1(x, t) = un(x, t) +

∫ t

0

λ(ξ, t) (Lun(x, ξ) + Run(x, ξ) + Nũn(x, ξ) − g(x, ξ)) dξ, n ≥ 0

(2)

where λ(ξ, t) is a general Lagrange multiplier which can be identified optimally via
the variational theory [6]. The function ũn is a restrictive variation which means
δũn = 0.Therefore, we first determine the Lagrange multiplier λ that will be identi-
fied optimally via integration by parts. The initial guess u0 may be selected by any
function that satisfies the two prescribed initial conditions [in this case]. The other
components of the solution can easily be determined iteratively and consequently
we may obtained exact solution by using

u = lim
n→∞

un. (3)

We will apply VIM to four physical models. The effectiveness and the usefulness
of the present method is demonstrated by finding the exact solutions to these four
physical models that will be investigated.

3 The homogeneous linear Klein Gordon equa-

tions

Example 1. Consider homogeneous linear Klein Gordon equation [15]

PDE utt − uxx + u = 0, (4)

I.C u(x, 0) = 0, ut(x, 0) = x. (5)

According to variational iterative method (VIM) [1 − 10], a correct functional for
Eq. (4) can be constructed as follows

un+1(x, t) = un(x, t) +

∫ t

0

λ(t, ξ)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ un(x, ξ)

)
dξ, (6)
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where λ is Lagrange multiplier, ũ is restrictive variation, that is δũn = 0. Making
the above correction functional stationary, and noting δũn = 0, we get the following
stationary conditions

∂2λ(t, ξ)

∂ξ2 = 0, (7)

1 − ∂λ(t, ξ)

∂ξ

∣∣∣∣
t=ξ

= 0, (8)

λ(t, ξ)|t=ξ = 0. (9)

The Lagrange multiplier, therefore can be identified as

λ(ξ, t) = ξ − t. (10)

Using Eq. (10) in Eq. (6) leads to the following recursive relation

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ un(x, ξ)

)
dξ. (11)

We start with an initial approximation

u0 (x, t) = u (x, 0) + tut (x, 0) = xt. (12)

and obtain the following successive approximations

u1(x, t) = xt − xt3

3!
, (13)

u2(x, t) = xt − xt3

3!
+

xt5

5!
, (14)

u3(x, t) = xt − xt3

3!
+

xt5

5!
− xt7

7!
, (15)

un(x, t) = x

(
t − t3

3!
+

t5

5!
− t7

7!
+ ....... +

(−1)nt2n+1

(2n + 1)!

)
. (16)

The approximate solution

u = lim
n→∞

un = x sinx. (17)

is obtained upon using the Taylor expansion of sinx. The solution obtained above
is same as given by Wazwaz [15].
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Example 2. Consider another homogeneous linear Klein Gordon equation with
initial conditions [15]

PDE utt − uxx + u = 0, (18)

I.C u(x, 0) = 0, ut(x, 0) = coshx. (19)

Similarly we can establish an iterative formula in the form

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ un(x, ξ)

)
dξ. (20)

We will start with initial approximation given below

u0 (x, t) = u (x, 0) + tut (x, 0) = t cosh x. (21)

The other successive approximations are

u1 (x, t) = t coshx, (22)

u2 (x, t) = t cosh x, (23)

:

:

un (x, t) = t coshx. (24)

The VIM admits that

u = lim
n−>∞

un, (25)

which gives the exact solution

u(x, t) = t cosh x. (26)

4 The inhomogeneous linear Klein Gordon equa-

tions

Example 3. Consider inhomogeneous linear Klein Gordon equation with initial
conditions [15]
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PDE utt − uxx + u = 2 sinx, (27)

I.C u(x, 0) = sin x, ut(x, 0) = 1. (28)

We obtain the following formulation by variational iterative method

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ un(x, ξ) − 2 sinx

)
dξ.

(29)

Beginning with the initial approximation

u0 (x, t) = sinx + t, (30)

the following approximations are obtained very easily

u1 (x, t) = sinx + t − t3

3!
, (31)

u2 (x, t) = sinx + t − t3

3!
+

t5

5!
, (32)

u3 (x, t) = sinx + t − t3

3!
+

t5

5!
− t7

7!
, (33)

:

:

un (x, t) = sin x +

(
t − t3

3!
+

t5

5!
− t7

7!
+ ..... +

(−1)nt2n+1

(2n + 1)!

)
. (34)

We therefore have the solution

u = lim
n→∞

un, (35)

u(x, t) = sinx + sin t. (36)

which is the exact solution as obtained by Wazwaz [15] by using ADM. While ap-
plying ADM there appear noise terms phenomena which does not appears in VIM.
So we obtain straightforward approximate solutions to Eqs. (27 − 28).

Example 4. Consider one dimensional inhomogeneous linear Klein Gordon
equation with initial conditions [15]

PDE utt − uxx + u = − cosx sin t, (37)

I.C u(x, 0) = 0, ut(x, 0) = cos x. (38)
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By the same manipulations as illustrated in Example 1, we can obtain the following
iterative formula

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ un(x, ξ) + cosx sin ξ

)
dξ.

(39)

We start with an initial approximation

u0 (x, t) = t cosx, (40)

which satisfies the initial conditions. With the help of recursive relation (2) the
successive approximations are obtained as:

u1 (x, t) = cosx cos t, (41)

u2 (x, t) = cosx cos t, (42)

:

:

un (x, t) = cosx cos t. (43)

The approximate solution leads to

u = lim
n→∞

un, (44)

u(x, t) = cosx cos t. (45)

which gives the exact solution as obtained by Wazwaz [15] using ADM. In this
example, solution obtained by Wazwaz [15] using ADM contains noise terms but
there is no such term in the solution obtained by VIM.

5 The inhomogeneous nonlinear Klein Gordon

equations

Example 5. Consider the inhomogeneous nonlinear Klein Gordon equation [15]

PDE utt − uxx + u2 = x2t2, (46)

I.C u(x, 0) = 0, ut(x, 0) = x. (47)



Variational iterative method 1937

By the same method as illustrated above, we obtain the following iterative formula

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ ũn

2(x, ξ) − x2t2
)

dξ.

(48)

We begin with an initial approximation

u0 (x, t) = xt, (49)

we obtain successive approximations

u1 (x, t) = xt, (50)

u2 (x, t) = xt, (51)

:

:

un (x, t) = xt. (52)

Its approximate solution is

u = lim
n→∞

un, (53)

u(x, t) = xt.

which is actually the exact solution.
Example 6. Consider another inhomogeneous nonlinear Klein Gordon equation

[15]

PDE utt − uxx + u2 = 2x2 − 2t2 + x4t4, (54)

I.C u(x, 0) = 0, ut(x, 0) = 0. (55)

The correction functionals for (54) read

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
+ ũn

2(x, ξ) − 2x2 + 2ξ2 − x4ξ4

)
dξ.

(56)

We can select u0(x, t) = x2t2, by using the given initial values. Accordingly, we
obtain the following successive approximations:
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u1(x, t) = x2t2, (58)

u2(x, t) = x2t2,

:

:

un(x, t) = x2t2. (59)

The VIM admits the use of

u = lim
n→∞

un, (60)

u(x, t) = x2t2. (61)

which is exact solution.

6 The Sine-Gordon equation

Example 7. Consider Sine-Gordon equation

PDE utt − uxx = sinu, (62)

I.C u(x, 0) = π
2
, ut(x, 0) = 0. (63)

The correction functional for Eq. (62)

un+1(x, t) = un(x, t) +

∫ t

0

(ξ − t)

(
∂2un(x, ξ)

∂ξ2 − ∂2ũn(x, ξ)

∂x2
− sinu

)
dξ. (64)

We take an initial approximation of the form

u0(x, t) =
π

2
+ t. (65)

Using this initial approximation in (64) we obtain the following successive approxi-
mations

u1(x, t) =
π

2
+ t + 1 − cos t, (66)

u2(x, t) =
π

2
+ t + 1 − cos t + sin t − 3

4
t − sin 2t

8
+ ......, (67)

So we obtain series solution in case of Sine-Gordon equation upto second order
approximation

u = lim
n→∞

un, (68)

u(x, t) =
π

2
+ t + 1 − cos t + sin t − 3

4
t − sin 2t

8
+ ......, (69)

It means in case of Sine-Gordon equation VIM also gives series solution.
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7 Conclusion

The aim of this work is to apply this powerful Variational iterative method to
investigate four physical models. The main goal is to show the usefulness of the
VIM. The Variational iterative method reduces the size of calculations and there is
no need of expanding nonlinearities in terms of Adomian polynomials as we do in
ADM [15]. Nonlinear scientific models are arise frequently in engineering problems
for expressing nonlinear phenomena. He’s variational iterative method provides
an efficient method for handling this nonlinear behavior. He’s variational iterative
method work much effectively, a few approximations can be used to achieved a high
degree of accuracy.
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