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Abstract

This paper suggests a general framework for dealing in a unified way
with the problem of the synthesis of a distribution through sets. Follow-
ing this view, interesting methods and quantities of sinthesis generally
discussed separately are seen as particular cases of the general concept
of mean of a distribution here presented. Various examples of means,
including some based on the use of probabilistic metrics, are discussed.
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1 Introduction

The paper’s aim is to provide a general framework in which to face the fun-
damental problem of the synthesis of a distribution. Here the synthesis of
a distribution is given a very general meaning; to summarize a distribution
means to replace it by a point, or a set of points, describing and representing
it in the ”best” way. For instance, one can summarize a distribution on R
through a mean in the usual sense, i.e. a single, appropriate real number. But
it is possible, and in some situations it can be more interesting and useful, to
replace the same distribution on & by an interval, perhaps of fixed length, or
more generally by a subset of i belonging to some particular family. Similarly,
if we consider a distribution on $#2, depending on the different situations and
on the aims of the search, it may be interesting to look for a single point of
the plane, or a line, or a circle with fixed radius, as mean of the distribution
considered. For instance, in this way we can obtain the vector of the arithmetic
means or medians in the first case, or the line of least squares in the second
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one. All these elements, found with respect to some reasonable criterion, can
be useful to resume the distribution and, in our discussion, will be considered
and denoted generally as means of the distribution itself.

So, problems usually discussed separately and by different tools can be
dealt with in a unified way, referring to the here presented general concept of
mean of a distribution p, in a class C, with respect to a function A\,. Through
this concept, it is possible to re-obtain, and often to consider under a different
view, many of the quantities usually discussed in the literature as synthesis
of a distribution; and in some cases, this general setting will give rise to new
kinds of means (according to our general meaning) of a distribution, some of
which having interesting characteristics and properties.

Given a distribution g on a set X and fixed the class C of subsets of X
in which we want to search for the mean of u, the fundamental step is to
single out a criterion according to which we desire to make the choice. The
most natural and general criterion is the following: first, to fix a function,
say A, associating to each C' in C a nonnegative number \,(C); second, to
select, as mean of 1, the element C of C (if it exists) for which A, is minimum.
We can give ), different meanings and each of such meanings can justify its
choice. For instance, \,(C') can represent a ”distance” (of course, not in the
sense of the theory of metric spaces even if |, as we will seen, in some cases
strictly connected with it), or a measure of the divergence, between p and C;
in other cases it can yield a measure of the (negative) consequences, or loss,
due to the substitution of 1 by C. Hence, C' can be interpreted as the element
of C "nearest”, or "most similar”, to p. Otherwise, if A, represent a loss, C
becomes the element of C minimizing it, hence in some sense the element of C
which summaries @ in the best way.

In fact, this point of view is largely present in the literature, even if it is
often applied in more restricted framework and in particular situations. For
instance, one can consider the well known notion of center of order £ of a
distribution on R, or those of linear and superficial centers of a distribution on
the plane (see Pompilj, 1984, for these concepts). For distributions on the real
line, this point of view is similar to that of Herzel (1961); indeed, our work
can be considered an extension of Herzel’s theory in two directions: from one
hand it concerns distributions on arbitrary spaces, from the other hand it is
not limited to ”simgle-point mean” only.

The proposed concept of mean is applied to distributions; as distribution
on a space X we mean a (formal) probability measure on the measurable space
(X, A), where A is a o-field of subsets of X'. In general, p can represent the
(real or obtained through some fitting procedure) distribution of a character-
istics in a statistical collective, or a distribution of quantity (see Benedetti,
1981), or, in some cases, a true probability distribution. The o-field A can
be completely arbitrary; however, in this paper, when X’ is a metric space, A
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will always be understood as the Borel o-field of X, i.e. the smallest o-field
containing all open subsets of X.

The plan of the work is the following. Section 2 will yield the general and
precise definition of mean of a distribution u, in a class C, with respect to a
function A,. Then, in this section we will present a kind of mean, which we
will call center, obtained by considering a particular form for the function A;
some examples of means will conclude the section. In section 3 we will consider
means, according to the definitions given, which comes out from particular
probabilistic metrics. Section 4 will yield the concept of modal set; we will see
as this concept extends in more directions the classical notion of mode of a
distribution, giving it a new and interesting meaning.

2 The definition of mean of a distribution

The present section yields a precise and general definition of the concept of
mean of a distribution, according to the point of view described in the intro-
duction. Let p be a distribution on (X, .A), where X is an arbitrary set and A
is a o-field of subsets of X. Let us consider a class C of subsets of X belonging
to A and a function A\, : C — [0, 400).

Definition 1. A set C in C such that

inf A, (C) = 2,(C) (1)

is called mean of p, in C, with respect to \,,.

How to interpret such a quantity and the different elements with respect
to which it is defined? We can consider C' as the element of C nearest to p
(or, more generally, one of the elements of C nearest to ). Of course, when
we say "nearest” we use an informal language; this notion is made precise by
the function A,. So, A, can be interpreted as a distance between the elements
of the class C and the distribution p. More precisely, for C' in C, A, (C) can be
considered a measure of the distance, or difference, between C' and pu, or, in
some cases, a measure of the (negative) consequences of the substitution of C'
to the distribution .

The mean of the distribution u, according to Definition 1, depends on a
second element: the class C. It represents the family of subsets of X in which
we desire to search for that mean. In other words, the choice of C is related to
the kind of set through which we want to summarize the distribution p. For
instance, if we are searching for a mean of p according to the usual meaning
(i.e., a point of X'), then we can take C as the class of all (or some) singletons of
X; indeed, it is sufficient to this aim to identify each singleton with its unique



1944 E. Melilli

element. If, as a second example, our aim is to search for a line that summarize
a distribution p on the plane, then we take C to be the class of the lines in the
plane; as we will observe later, if A, is chosen appropriately, then in this case
the mean of u is the well known line of least squares. In other cases it may be
interesting to summarize a distribution 1 on a metric space through a sphere
of fixed radius (for instance, an interval of fixed length in ). Then, we search
for a mean of u, with respect to some function A,, in the class C of all such
spheres.

Hence, different choices of the class C and of the function A, yield different
means, in the sense of Definition 1, of the distribution p. So, in this way
one can obtain synthesis of u with various meanings and with respect to very
different aims.

s

We can derive interesting and large classes of means, according to Definition
1, by selecting functions A, having a particular structure, as precised by the
following definition.

Definition 2. If p is a nonnegative function on X x C such that p(-,C) is
p-integrable for every C' in C, then a mean of u, in the sense of Definition 1,
with respect to the function

M(C) = [ o, Conlda), @

is called a center of pu, in C, with respect to p.

The "distance” \,(C) between the element C' of C and the distribution
i depends, in this case, on another function p(x,C), whose task is to fix, in
quantitative terms, the ”divergence”, or "difference”, between C' and the point
xz in X. The function p(x,C) is, except that for the condition of integrabil-
ity, completely arbitrary, so that different choices of it give rise to many and
different centers. Note that, in (2), the function \,(C') is obtained by integrat-
ing p(z,C) with respect to u; i.e., we have computed the expected value of
p(X,C), where X is a random element having distribution p. It is clear that it
is possible to consider different ways to summarize p(z, C') in order to produce
a "distance” function \,; we will briefly speak about this possible extension of
the notion of center at the end of the present section.

Now we discuss some examples of means obtained according to Definition
2. These means are well known and largely used in statistics, so that it is of
some interest to recognize that they may be obtained and reconsidered in this
general setting.

As a first example, let u be a distribution on R having a finite moment of
order k, where k is a positive real number. If we search for a center of pu, in
C = {{y},y € R}, with respect to the function p(z,{y}) = |z — y|*, we are led
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to look for a point ¢ in R for which

. k ik
;gaf%/%kr yl"u(dx) —/§R|x glI"u(dz).
It is well known that such a point y exists for each k£ > 0, and it is called
center (in the classical sense) of order k of u. In particular, if k =1 or k = 2,
we obtain the median and the (arithmetic) mean respectively.

Now suppose X = {x1,2s,...,2,} and consider a distribution p on X,
determined by the point masses py,ps, ..., pn, where p; = pu({z;}). As in the
previous example, let C be the class of the singletons of X'. We search for a
center of u, in C, with respect to the function

plan ) ={ 127

1=7.

Since

[ ol dybnlde) = 1 = u({y))

it is clear that x; is a center of u, in C, with respect to p if and only if z; is
a mode of u according to the usual, classical meaning. We will deal in more
detail with the notion of mode of a distribution and more generally with the
concept of modal set in Section 4.

Let now p be a distribution on R* having a finite variances and covariances
matrix and consider the class C = {{y}, y € §R’“} and the function

k

p(z, {y}) =S (zi —v:)* = ||z — y||~

i=1
According to Definition 2, a center of u, in C, with respect to p is a vector y
in R* such that

k

inf Z/w — ) p(dr, ... dry) = Z inf [ (y; — x;)*p(dz;)

yeRk i viER R

k
=3 [ G = v uldan . da);
i=1

hence, g is the vector of the arithmetic means of the marginal distributions of
p. If, in place of ||z — y||?, we consider

k

p(:L‘, {y}) = Z ’331 - yi"
i=1
i.e. the so called metropolitan distance between z ed y (see, for instance,
Benedetti, 1981), we obtain, as a center of u, in C, with respect to p, a vector
whose components are medians of the marginal distributions of .
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As a final example, let us consider a distribution p on R? with finite vari-
ances and covariance and the class C of all the lines of the plane not parallel
to the y-axis. If we denote by x = (x1,x9) a point of R? and we identify the
line in C having equation xs = ag + a1z with the pair (ag, a;), we obtain, as
center of p, in C, with respect to the function

p ((x1,22), (a9, a1)) = [22 — ag — arz4?, (3)

the line whose associated pair (ag, a;) minimizes [p2 (22 — ag — ayz1 > p(drdzs);
that is, the well known least squares line, or regression line, in the direction
of the y-axis. If we consider, instead of the function (3) (representing the
distance, in the direction of 3, between a point and a line), as function p the
distance between a point and a line in a different direction, we obtain the least
squares line in that direction as center of 1 in the class of the lines not parallel
to that direction; see, for the determination and some properties of this kind
of mean, Pompilj (1984). More generally, for a distribution y on ¥, one can
obtain, with proper choices of C and p, the hyperplanes of least squares as
centers of 1 in the sense of Definition 2.

We conclude the section with a brief mention to means whose definition is
similar to Definition 2, except for the fact that the mean value (expected value)
is replaced by other quantities, for instance the median. More precisely, given
a distribution u on (X, .A) and a class C of measurable subsets of X', consider
a function p : & x C — [0,400). The quantity A\,(C) = [y p(z,C)u(dz),
considered in (2), can be viewed as a mean distance between C and the points
of X distributed according to u. Instead of the mean distance, we can consider,
for instance, the median of this distance; in this case it is also possible to drop
the hypothesis of integrability of p. Hence, if we put

M(C)=mf{t e R: p({x € X : p(z,C) < t}) > 1/2}, (4)

(i.e., A\,(C) is the median of the distribution of p(X,C), being X a random
element with distribution ), then the mean of p, in C, with respect to A, is
a set C in C for which such A, is minimum. As an example, consider X = R,
C ={{y},y € R} and p(z,C) = p(z,{y}) = [z — y|. Denoting by h(y) the
quantity A\,({y}), we have

hy) =inf{t € R: p(ly —t,y+1t]) =2 1/2}.

The mean of p, in C, with respect to A, is the middle point y of the interval
of minimum length between those with mass larger than 1/2. If, for a partic-
ular case, p is the negative exponential distribution with mean 1/6, then ¢ is
(20)~'log 2. If p is gaussian with mean m and variance o2, we have § = m.
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3 Means based on probabilistic metrics

We said in the previous section that the function A\, which, given the distri-
bution p and the class C, determines the mean of p in C can be interpreted
as a distance between an element C' of C and u. Clearly, the word distance
has to be taken in an informal way, without any reference to the theory of
metric spaces. In fact, interesting and in some cases well known means derive
from functions A\, strictly connected with metrics defined on spaces of (formal)
probability measures. In the present section we will discuss some examples of
means obtained in this way, fixing our attention on classes C whose elements
are singletons. Let us consider a metric space X with distance d, a distribution
won (X, A) and the class C = {{y},y € X}. We are interested in means of
1 in C, in the sense of Definition 1, with respect to functions of the following
kind:

M({y)) = o(12,5,). (5)

where ¢, denotes the distribution having all its mass in y and o is a metric on a
space P of probability measures on (X, .A) containing x and all the degenerate
distributions. According to Definition 1, a mean of p in C is a point § in X
such that d; is the degenerate distribution nearest to p (with respect to the
metric o). Clearly, for each choice of the metric o there is a particular function
A, and hence, in general, a different mean of p in C.

We now deal with some of this means, obtained from particular and well
known probabilistic metrics. As a first example, let X = R and consider the

Gini-Kantorovich metric, defined by
+oo
olpv) = [ IP(t) - G,

—0o0

for probability measures p and v having finite first moment; F' and G denote
the distribution functions corresponding to p and v respectively. Given p on
(R, B), we are then interested in the quantity

A(h) = od) = [* P+ [ - P,
where y is a real number. The following proposition holds.
PROPOSITION 1. We have

inf oy, dy) = o(u, 55)

if, and only if, y is a median of .

Proof. For y in R, let us put g(y) = o(p,0,), a = inf{t € R : F(t) > 1/2}
and b = sup{t € R : F(t) < 1/2}; we have a < b and [a,b] = {t € R :
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limy, o+ F'(t —h) < 1/2 < F(t)} is the set of all medians of F' (or of u). Let
y < a. Since F(t) < 1/2 for each ¢ in (y, a), then

[ = Fna> [ Fa
y y
from which follows

o) = [ Fwar+ [

— 00 Yy

1 F(edr+ [ Ul P

> [0 F dt+/ F(t)dt+/a+oo[1—F(t)]dt:g(a).

In the same way, if y > b, we have, for each ¢ in (b,y), F'(t) > 1/2, so that

/byF(t)dt>/by[1—Ft dt

which implies

a(y) :/b dt+/ dt+/+m[1—F(t)]dt

>/b dt+/ 1-F dt+/+oo[1—F(t)]dt:g(b).

Hence, if y does not belong to [a,b], g(y) > max{g(a), g(b)}. Let us now verify
that g is constant on the interval [a, b]. Let y be a point in [a, b]; we have

g = | F(t)dt+/ayF(t)dt+/yb[1—F(t)]dt+/b+oo[1—F(t)]dt.

But, if a < t < b, limy,_o+ F(t — h) < 1/2 < F(t) < 1/2, that is F(t) = 1/2,
so that . .

o) = [ F®dt+50b-a)+ [ L-Fld
does not depend on y. So, ¢ is a point of minimum for ¢ if and only if it
belongs to the interval [a, b]; this concludes the proof.

By Proposition 1, a median of p can be seen as a point whose associated
degenerate distribution is the nearest one, with respect to Gini-Kantorovich’s
distance, to . This fact is more evident and its proof straightforward if we
observe that Gini-Kantorovich’s distance is a particular Wasserstein’s distance;
we will discuss below this class of metrics. We recall that a median can be
obtained as a mean, according to our point of view, also in a different way (see
one of the examples in the previous section).
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Another distance largely used in probability theory is Prohorov’s metric,
which can be defined for distributions on arbitrary metric spaces. If y and v
are probability measures on (X, A), where X is a metric space with metric d,
the Prohorov distance between p and v is defined as follows:

o(u,v) =inf{t > 0: u(A") +t > v(A),VA € A}, (6)

where A" = {z € X : d(z,A) < t} and d(z,A) = inf,cad(z,z). We are
interested in the quantity A, ({y}) = o(u, d,); it is simple to see that o(p, §,) =
inf {t > 0: p(Uy(t)) > 1 —t}, where Uy,(t) denotes the open sphere with center
y and radius t. If we denote by U the class of all open spheres U,(t) of
X with ¢ > 0, y in X and such that p(U,(t)) > 1 — ¢, then a point y in X
minimizes A\, ({y}), and hence is a mean of 1, in C, with respect to A, if it is the
center of a sphere in ¢ having minimum radius. Of course, a point with these
characteristics does not necessarily exist and, if it does, needs not be unique;
in the particular case in which p is diffuse (i.e., it does not have concentrated
masses), such a point does exist and it is unique. This mean, having an
intuitive and interesting meaning, is in some way connected with the classical
concept of mode of a distribution or, more directly and generally, with that of
modal set which we will discuss in section 4. For a more detailed analysis of
the mean obtained through Prohorov’s distance and for the discussion of some
related examples, we refer to Melilli (1995), where the function o(y, ¢,) defined
in (6) is dealt with as a measure of the dispersion of x around the point y.

Let us now consider the distance, for distributions p and v on an arbitrary
measurable space (X, .A),

o(11,v) = sup [j(A) — v(A)].
AeA

We have
Al{y}) = o, 6y) =1 = p({y}),
so that
A{h) = inf Au({yh) = 1= sup p({y})

if and only if
n({gh) > n{y})  Wex.

In other words, the point ¢ minimizes A, if and only if it is a mode of p.
Clearly, this quantity has interest for discrete distributions only.
For X = R, we can also consider the uniform metric

o(p1,v) = sup |F(t) — G(2)],
teR

F and G being the distribution functions corresponding to y and v respectively.
We have

A{y}) = o(p, 6y) = max{F(y), 1 — F(y)},
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and, as usual, a point y of § is a mean of p1, with respect to A,, if and only if
it minimizes this latter. If there exists y such that F'(y) = 0.5, then § = y (
in this case, of course, 7 is a median of p). If such a point y does not exist,
then consider the median y, (unique, in this case) of p, for which F'(yy) > 0.5
and limy,_ g+ F(yo — h) < 0.5. If F(yo) <1 —limy,_o+ F(yo — h), then § = yj,
otherwise ¢y does not exist.

Let us now analyze the means derived from functions A, of type (5), when
we use as metric o a Wasserstein distance. This metric is defined, for proba-
bility measures on a space with arbitrary metric d, in the following way:

oluv) = inf [ d(w,=)(dedz), (7)
el (v) J X2
['(u,v) being the Fréchet class with marginals p e v, i.e. the class of all
distributions on (X2, A?) having marginals ;1 and v respectively. We are so led
to consider the quantity

M) = o(n.0,) = [ dlz,y)n(da)

since the Fréchet class for which a marginal is degenerate has a unique ele-
ment. The search for a mean of p, in C, with respect to such function A,
is then equivalent to the determination of the point ¢ for which is minimum
S d(z,y)p(dx); so we are led to find particular means in the sense of Defini-
tion 2, i.e. particular centers of u, in C = {{y},y € X'}, with respect to the
function p which, in this case, coincides with the metric fixed on the space
X. Hence, we can obtain, following this different direction, all the (point)
means discussed in the examples of the previous section. Let us observe that,
if X = R and d is the euclidean distance, the Wasserstein metric defined in (7)
coincides with Gini-Kantorovich’s distance (see, for a proof, dall’Aglio, 1956).
Hence, the proof of Proposition 1 follows directly from the fact that the medi-
ans of a distribution are the centers (according to the classical meaning of the
term) of pu of order one.

4 Modal sets

Here we consider a particularly interesting class of means, defined according
to the point of view adopted in this paper. These means will be called modal
sets, since, as we are going to see, they are in some way generalizations of the
well known mode of a distribution.

With reference to Definition 2, let (X', .4) be an arbitrary measurable space
and C a class of elements of A. Define

oo 0) = o) = T2 ®)
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Let us notice that, if X" is a metric space with metric d(z,y) = Iyy-(x) (i-e., a
discrete metric space), then p(z, C) is the usual distance between a point and
a set; indeed,

inf d(z,y) = inf Iy)e(2) = Iee(2) = p(=, C)-

According to Definition 2, a mean in C of a distribution p on (&X,.A), with
respect to p, is any element C' in C such that

[, pla. Oulda) =1 = u(C) = nf{1 - u(O)},

or, equivalently, such that

u(C) = Sgggu(c). (9)

A set C which satisfies (9) is called modal set of pu in C, or, more briefly, mode
of win C. In short, C' is the element of C which has the largest p-mass. Clearly,
such a mean needs not to exist or to be unique. It is simple to show how the
well known mode of a (discrete) distribution can be seen as a particular case
of the now defined modal set. Indeed, if i has support S = {1, 29, ..., }, with
u({z;}) = p;, and we consider the class C = {{y},y € X} (and, as usual, we
identify the set {y} with its element y), then a mode of p in C, according to
our definition, is a point z; of S such that p; > p; for all j =1,2,...; in other
words, x; is a mode of x in the usual, classical meaning.

Dealing with modal sets, it turns out to be particularly interesting the
following situation. We assume, with reference to our definition of modal set,
X metric space with distance d and C = C; = {U,,z € X}, where U, = {y €
X :d(x,y) <t} and t > 0; that is, we consider the class of all closed spheres
of X having fixed radius ¢. Then, C = U, = U; is the sphere with radius ¢
to which p assignes the largest mass; hence, Z is a point (not necessarily the
unique point) which is the center of the closed sphere of radius ¢ on which is
concentrated the largest mass (of u). We have already noticed how a modal
set, in general, needs not to exist; in this case, we can prove its existence.
Indeed, the following proposition holds.

PROPOSITION 2. For any t > 0, there exists at least one solution for the
equation (in y)
p{z e X dlxy) <t})=suppu({zr e X :d(x,z2) <t}). (10)

zeX

Proof. Let ¢ = sup, .yt ({x € X : d(x,z) <t}) and consider the following
sets: A={yeX : p({reX dlzy) <t})=c}, Ac={ye X :p({r e X:
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d(xz,y) < t}) > ¢ — €}, where ¢ is a positive number, and B = N.5gA4.. We
show that A = B. Of course, A C B. To show the converse, let us consider
a point y in B, so that pu({x € X :d(x,y) <t}) > ¢—¢c forall e > 0, or
equivalently p({z € X : d(x,y) <t}) > c¢. From the definition of ¢ follows
p({z e X dz,y) <t})

= ¢, so that y belongs to A and hence B C A. The proof is complete if we
show that B is non-empty. Observe that A, is, for any € > 0, a compact set.
Indeed, let {y,}.>1 a sequence of points in A. converging to a point y. Then,
for every n > 0 and n large enough, we have d(y,,y) < n. Hence

c—e<p (fred dlry,) <t}) <p({reX:dy <t+n}), (1)

where the first inequality holds since y, belongs to A, and the second one is
true since, for n large enough, d(y,x) < d(y,y,) + d(yn,x) < n+t. Now,
as we have p({xr € X :d(z,y) <t+n}) > ¢ — ¢ for all n > 0, it follows
p({z e X :d(z,y) <t})

> ¢ — ¢ and hence y belongs to A., so that A, is compact. Since A, is, for all
e > 0, a compact, non-empty set and A., C A, if e; < &9, it follows B # ()
and, as A = B, A is non-empty; in other words, equation (10) has at least one
solution.

We could consider the open spheres of X in place of the closed ones; i.e., we
could be interested in the open sphere with radius ¢ > 0 which is modal for a
distribution . In this case, if p is not diffuse, such a mode needs not to exist.
Note that, when X = R, a center of u, in C;, with respect to the function p
defined in (8), is a modal interval of length 2¢, a certainly interesting quantity
as a synthesis of a distribution.

To conclude the section, we point out the existence of a strict link between
the modal spheres defined above and the well known Lévy concentration func-
tion; we refer to the paper by Hengartner and Theodorescu (1973) for its
definition and the proof of some results that clarify these connections.
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