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Abstract

In this paper, we study an M/G/1 queue with two phases of het-
erogeneous service. A first essential service is provided to all arriving
customers. Upon completion of this service, a customer can either opt
for a second phase of service or can leave the system. A customer, who
finds the server busy, either leaves the system with probability (1-α) or
joins an orbit with probability α. From the orbit the customer makes re-
peated attempts to obtain service. We assume the inter retrial times are
exponential random variables. We also assume that upon completion
of a service, the server either remains in the system with probability
β0 or leaves the system for an ith type of vacation with probability
βi(1 ≤ i ≤ M) where

∑M
i=0 βi = 1. We obtain the probability gener-

ating functions of the system size distribution as well as the orbit size
distribution in the steady state. We obtain a stochastic decomposition
of the system size distribution and an expression for the additional in-
crease in the congestion due to the presence of retrials, in the steady
state. We discuss some particular cases.

Keywords: Retrial queue, non-persistent customers, second phase of op-
tional service, different vacation policies

1 Introduction

The theory of retrial queues have been extensively applied in the study of
communication and computer networks. Their special characteristic is that, a
customer who finds a busy server does not leave the system or joins a queue.
He joins an orbit(retrial group) from where he makes repeated attempts to
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obtain service. Several survey articles, bibliographic articles and monographs
have been published on retrial queues, see [1],[2], [4] and [6].

Madan [8], Medhi[9] and Choudhury[5] have studied M/G/1 queues with
two phases of service. The server first provides a regular service to all arriving
customers, whereas only some of them receive a second phase of optional ser-
vice. More recently, Artalejo and Choudhury [3] investigated a similar type of
M/G/1 queue under classical retrial policy. Senthilkumar and Arumuganathan
[10] have studied an M/G/1 retrial queueing system with two phase of essential
service, non-persistent customers and different vacation policies.

In this paper, we examine the steady state behavior of an M/G/1 retrial
queueing system with two phases of service, the first service being an essential
service provided to all arriving customers and the second service is an optional
service provided to some of the customers. A customer who finds the server
busy either leaves the system with probability(1 − α) or joins the orbit with
a probability α. Upon completion of each service, the server can remain in
the system with a probability β0 or may leave for the ith type vacation with a
probabilityβi(1 ≤ i ≤ M) and

∑M
i=0 βi = 1.

An example of such a model is provided by customer requests at a call
center. A customer who calls up a call center is initially connected to a re-
ceptionist, who collects all the information from the customer and answers his
questions(first essential service). If the customer has some technical problems
to be sorted out he may ask that he be allowed to contact a technical person in
the call center( second optional service). Otherwise he may be satisfied with
the answers given by the receptionist. If the customer gets a busy signal upon
calling the call center he may either decide to make retrial attempts to gain
service or may decide to abandon this call for the time being. After attending
a customer’s call, the receptionist may remain in the system to attend another
call or may go away to take a break or may attend to some other jobs in the
call center or may decide to call up potential customers. These events can be
considered as server vacations with different policies.

The rest of the paper is organized as follows. In section 2, we introduce the
mathematical model of the system. In section 3, we derive the main results
of the paper. In section 4, we obtain performance measures of the system. In
section 5, we discuss some particular cases.

2 Mathematical Model

In this section, a single server retrial queueing system is considered. The
primary customers arrive according to a Poisson process with rate λ. If a
primary customer, on arrival finds the server busy, he becomes non-persistent
and leaves the system with probability (1−α) or with probability α, he enters
into an orbit. The retrial times of the individual customers are assumed to
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be i.i.d random variables with a distribution function 1 − e−μx. The server
provides a first essential service(FES) to all arriving customers. As soon as
the FES of a customer is completed, then the customer may leave the sys-
tem with probability 1-r or may opt for the second optional service (SOS)
with probability r. The service times S1 of the FES and S2 of the SOS are
independent random variables having general distributions with distribution
functions B1(.), B2(.), Laplace Stieljes transforms (LST) B∗

1(.), B
∗
2(.) respec-

tively. The total service time of a customer in the system is therefore given by

S =

{
S1 + S2 with probability r
S1 with probability 1-r

The total service time S has a distribution function B(.) and has LST B∗(s) =
(1 − r)B∗

1(s) + rB∗
1(s)B

∗
2(s). Let b1, b2 denote the expected values of the FES

and SOS respectively. Then

E(S) = b1 + rb2

E(S2) = E(S2
1) + rE(S2

2) + 2rb1b2

Let ν(x) denote the hazard function of the service time,i.e ν(x) = B
′
(x)

1−B(x)
.

As soon as the service is completed, the server may go for the ith(i = 1, 2 · · ·M)
type of vacation with probability βi, or may remain in the system to serve the
next customer, if any, with probability β0, where

∑M
i=0 βi = 1. Let Vk be

the duration of the server vacation time in the kth vacation scheme and let
Vk(x) and vk(x)denote the distribution function and the hazard rate function
respectively of the random variable Vk (1 ≤ k ≤ M). We assume that the
interarrival times, retrial times, vacation times and service times are mutually
independent of each other .
Let N(t) denote the number of customers in the orbit at time t.

The server state is denoted by, C(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if the server is idle
1, if the server is doing either FES

or SOS service
2, if the server is on vacation

We define the following supplementary variables. If C(t)=1, we define ξ(t) =the
elapsed service time of the customer in service at time t. If C(t) =2, ξ(t)= the
elapsed vacation time.
The process{(C(t), N(t), ξ(t)), t ≥ 0} is a Markov process. Define

P0,n(t) = Prob {C(t) = 0, N(t) = n} , n ≥ 0

P1,n(x, t)dx = Prob {C(t) = 1, N(t) = n, x ≤ ξ(t) < x + dx} , x ≥ 0, n ≥ 0

P k
2,n(x, t)dx = Prob {C(t) = 2, N(t) = n, x ≤ ξ(t) < x + dx} , x ≥ 0, n ≥ 0

k = 1, 2, · · · , M
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3 Steady state system size distribution

Let us assume that the system attains the steady state. From the Kolomogorov
equations of the system, we have

{λ + nμ}P0,n = β0

∫ ∞

0
P1,n(x)ν(x)dx +

M∑
k=1

∫ ∞

0
P k

2,n(x)vk(x)dx (1)

d

dx
P1,n(x) = −{λα + ν(x)}P1,n(x) + (1 − δn,0)λαP1,n−1(x) (2)

d

dx
P k

2,n(x) = −{λα + vk(x)}P k
2,n(x) + (1 − δn,0)λαP k

2,n−1(x) (3)

for k= 1,2,..,M

P1,n(0) = λP0,n + (n + 1)μP0,n+1 (4)

P k
2,n(0) = βk

∫ ∞

0
P1,n(x)ν(x)dx (5)

for k= 1,2,..,M

Now we define the following partial generating functions. For |z| ≤ 1 and
x ≥ 0

P0(z) =
∞∑

n=0

P0,nzn

P1(x, z) =
∞∑

n=0

P1,n(x)zn

P k
2 (x, z) =

∞∑
n=0

P k
2,n(x)zn, k = 1, 2, .., M

The above functions along with (1) to (5) give us the following result

λP0(z) + zμP ′
0(z) = β0

∫ ∞

0
P1(x, z)ν(x)dx

+
M∑

k=1

∫ ∞

0
P k

2 (x, z)vk(x)dx (6)

∂

∂x
P1(x, z) = −{λα + ν(x)}P1(x, z) + λαzP1(x, z) (7)

∂

∂x
P k

2 (x, z) = −{λα + vk(x)}P k
2 (x, z) + λαzP k

2 (x, z) (8)

for k= 1,2,..,M

P1(0, z) = λP0(z) + μP ′
0(z) (9)

P k
2 (0, z) = βk

∫ ∞

0
P1(x, z)ν(x)dx (10)

for k= 1,2,..,M
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From (7) and (8), we have

P1(x, z) = P1(0, z)e−λα(1−z)x(1 − B(x)), (11)

P k
2 (x, z) = P k

2 (0, z)e−λα(1−z)x(1 − Vk(x)), (12)

k = 1, 2, ..., M.

Define

P1(z) =
∫ ∞

0
P1(x, z)dx, (13)

P k
2 (z) =

∫ ∞

0
P k

2 (x, z)dx, k = 1, 2, ..., M. (14)

Therefore

P1(z) =
1 − B∗(λα(1 − z))

λα(1 − z)
{λP0(z) + μP ′

0(z)} (15)

P k
2 (z) =

1 − V ∗
k (λα(1 − z))

λα(1 − z)
{λP0(z) + μP ′

0(z)} βkB
∗(λα(1 − z)) (16)

k = 1, 2, ..., M

From (6)

P0(z) = P0(1) exp

{
λ

μ

∫ z

1

1 − R(u)

R(u) − u
du

}
(17)

where R(z) = B∗(λα(1 − z))

{
β0 +

M∑
k=1

βkV
∗(λα(1 − z))

}
and

B∗(λα − λαz) = {(1 − r) + rB∗
2(λα − λαz)}B∗

1(λα − λαz)

Now the PGF of the orbit size distribution is

P (z) = P0(z) + P1(z) +
M∑

k=1

P k
2 (z)

=

{
α(R(z) − z) + 1 − R(z)

α(R(z) − z)

}
P0(z) (18)

From the normalizing condition, limz→1 P (z) = 1, we get

P0(1) =
1 − ρα

1 + ρ(1 − α)
(19)

where ρ = λ

{
rb2 + b1 +

M∑
k=1

βkE[Vk]

}

Hence

P (z) =

{
α(R(z) − z) + 1 − R(z)

α(R(z) − z)

}
1 − ρα

1 + ρ(1 − α)
e

λ
μ

∫ z

1

1−R(u)
R(u)−u

du (20)
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Remark: From the expression for P (z) given in (20), we see that, P0(1) must
be greater than zero. Therefore a necessary condition for the existence of the
steady state is ρα < 1.
Let K(z) be the PGF of the system size distribution. Then

K(z) =

{
(α − 1)(R(z) − z) + (1 − z)B∗(λα(1 − z))

α(R(z) − z)

}
P0(z) (21)

3.1 Stochastic decomposition

Let K∞ be the random variable which denotes the system size at time t in
the steady state in the classical M/G/1 queue with non-persistent customers
and different vacation policies. It can be verified that (See [7]) the probability
generating function of K∞ is given by

K∞(z) =
(α − 1) {R(z) − z} + (1 − z)B∗(λα(1 − z))

α(R(z) − z)

1 − ρα

1 + ρ(1 − α)
(22)

Now introduce a random variable Rμ with the generating function

E(zRμ) = exp

{
λ

μ

∫ z

1

1 − R(u)

R(u) − u
du

}
(23)

The r.h.s of the above equation is P0(z)
P0(1)

. The distribution of the random variable
Rμ coincides with the conditional distribution of the number of sources of
repeated calls given that the server is free. From (21),(22)and (23), we see
that

K(z) = K∞(z) E(zRμ)

Thus, the random variable Rμ describes the increase in the size of the system
due to the presence of retrials.

4 Performance measures

a) The mean number of customers in the orbit

Lq = P
′
(1) =

λ

μ

(
ρα

1 − ρα

)
+

λ2αγ∗
2(1 − ρα)(1 + ρ(1 − α))

where γ∗ = E[S2] + 2E[S]
M∑

k=1

βkE[Vk] +
M∑

k=1

βkE[V 2
k ]

b) The blocking probability that an arriving customers finds the server busy
or away on vacation

b = 1 − P0(1) =
ρ

1 + ρ(1 − α)
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c) The mean waiting time in the orbit Wq = Lq

λα

d) The mean number of customers in the system

L = K
′
(1) =

λ

μ

(
ρα

1 − ρα

)
+

λE[S]

1 + ρ(1 − α)
+

λ2αγ∗
2(1 − ρα)(1 + ρ(1 − α))

=
λ

μ

(
ρα

1 − ρα

)
+ E[K∞] (see [7])

The expected increase in the congestion in the system due to the presence of
retrials is therefore given by λ

μ

(
ρα

1−ρα

)
e) The mean response time W = L

λα

f) The steady state distribution of the server state is given by

Prob {server is idle} = P0(1) =
1 − ρα

1 + ρ(1 − α)

Prob {server is busy} = P1(1) =
λ(b1 + rb2)

1 + ρ(1 − α)

Prob {server is on vacation} =
M∑

k=1

P k
2 (1) =

λ
∑M

k=1 βkE[Vk]

1 + ρ(1 − α)

5 Particular cases

Case(i) If the second optional service is essential (i.e. r =1), then the PGF of
the number of customers in the orbit is

P (z) =
α(R(z) − z) + 1 − R(z)

R(z) − z
P0(z) (24)

where R(z) = B∗
1(λα − λαz)B∗

2(λα − λαz)

{
β0 +

M∑
k=1

βkV
∗
k (λα − λαz)

}

P0(z) =
1 − ρα

1 + ρ(1 − α)
exp

{
λ

μ

∫ z

1

1 − R(u)

R(u) − u
du

}

Equation(24) agrees with the PGF of the number of customers in the orbit in
the steady state obtained by Senthil Kumar and Arumuganathan [10].
Case(ii) If α = 1, β0 = 1, βi = 0, i=1,2,...,M, then the PGF of the system size
becomes

K(z) =
(1 − z) {(1 − r) + rB∗

2(λ − λz)}B∗
1(λ − λz)

[{(1 − r) + rB∗
2(λ − λz)}B∗

1(λ − λz) − z]
P0(z)

where P0(z) = (1 − ρ) exp

{
λ

μ

∫ z

1

1 − {(1 − r) + rB∗
2(λ − λu))}B∗

1(λ − λu)

{(1 − r) + rB∗
2(λ − λu)}B∗

1(λ − λu) − u
du

}
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This is the same as equation (16) given by Artalejo and Choudhury [3] with
1 − r = q and r = p.
Case(iii) If there is no vacation, i.e, β0 = 1, βi = 0, i=1,2,...,M, there is no
impatience, i.e, α = 1 and the retrial rate μ → ∞, then the expression for the
PGF of the system size becomes

K(z) =
(1 − z)(1 − ρ) {(1 − r) + rB∗

2(λ − λz)}B∗
1(λ − λz)

{(1 − r) + rB∗
2(λ − λz)}B∗

1(λ − λz) − z

This is the same as equation (3.3) given by Medhi[9]
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