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Abstract

Measuring the performance of a production system has been an im-
portant task in management for purposes of control, planning, etc. Tra-
ditional studies in data envelopment analysis (DEA) view systems as a
whole when measuring the efficiency, ignoring the operation of individ-
ual processes within a system.but in Network DEA we are allowed to
consider the evaluation of changes occurred within the process. In this
research, we propose a methodology named CINDB(Combined Interval
Net DEA and BSC) to evaluate the performance of organization consid-
ering financial and non-financial perspectives, and we know The input
and output measures for the integrated DEA-BSC model are grouped in
”cards” which are associated with ” BSC ”. BSC clear representation of
the relationship and logic between the key performance indicators(KPI)
of 4 perspectives - financial, customer, internal process, and learning
and growth.
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1 Introduction

Measuring the performance of a production system has been an important task

in management for purposes of control, planning, etc. One technique widely

applied to measure the relative efficiency of a set of production systems, or

decision making units (DMUs), which utilize the same inputs to produce the

same outputs, is data envelopment analysis (DEA). Conventionally, the system

is treated as a black box, in which only inputs and outputs of the black box

are considered in measuring the efficiency. The performance of the component

processes interacting with each other in the system are not considered. DEA is

a mathematical programming technique that claborates the relative efficiency

of multiple decision-making units (DMUs) on the basis of observed inputs and

outputs, which may be expressed with different types of metrics. The BSC is

a management tool composed of a collection of measures, arranged in groups,

and denoted as cards. The measures are related to four major managerial

perspectives, and are aimed at providing top managers with a comprehensive

view of their business.The cards offer balanced evaluation of the organizational

performance along financial, marketing, operational and strategic dimensions.

BSC combines financial and operational measures, and focuses both on the

short- and long-term objectives of the organization. It was motivated by the

realization that traditional financial measures by themselves are inadequate in

providing a complete and useful overview of organizational performance.

There has been limited study in the literature to tie between BSC and

DEA. Rouse, Putterill and Ryan (2002) described the performance analyti-

cal tools and frameworks used to support change-management in the aircraft

servicing and maintenance division by BCS-DEA methodology. Also Eilat,

Golany and Shtub (2005) proposed and demonstrated a methodology for the

construction and analysis of efficient, effective and balanced portfolios of R

and D projects by using BSC-DEA. The method that we propose in this pa-

per uses an extended DEA model, which quantifies some of the qualitative

concepts embedded in the BSC approach.

I think , application of DEA to evaluate the BSC result may be a good

solution to the implementation of the BSC. Richard (2003) argues that DEA

is suitable for measuring the best practice of the BSC indicators. The effi-

ciency frontier as measured by DEA can be used to specifically investigate the

efficiency of decision-making units (DMUs). The slack could be used as the

evaluation of a firm’s efficiency on those BSC indicators. (Rickards 2003). [18]
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The integrated interval net DEA-BSC model addresses four common goals that

firms are trying to accomplish: (1) achieving strategic objectives (effectiveness

goal); (2) optimizing the usage of resources in generating desired outputs (ef-

ficiency goal); (3) obtaining balance (balance goal); and (4) obtaining Cause

and Effect in Perspectives . The model is applicable for every organizations

for-profit. The contribution of the model that is presented in this paper is

both conceptual, and excutive for any given DMUthat are devoted to specific

output/input measures.[18] In this present paper, there will be, in the first

section,we provides an introduction to DEA and BSC . next section we have

view on combined Network DEA and BSC model. Then in the section.3, we

will develop the combined Network DEA Models and BSc on interval inputs

and outputs. Finally, in the last section, we will have conclusions.

2 LITERATURE REVIEW

2.1 DEA models

Data envelopment analysis (DEA) is a non-parametric technique that ranks

units based on their relative ability to convert inputs into outputs. (Charnes et

al., 1978; Schinnar et al., 1990). DEA uses linear programming methodology

to define a production frontier for decision-making units. One main advantage

of DEA is that it allows several inputs and several outputs to be considered

at the same time. Assume a set of observed DMUs, DMUj; j = 1,. . .,n,

associated with m inputs, xij; i = 1,. . .,m, and s outputs, yrj; r = 1,. . .,

s. In the method originally proposed by Charnes et al. (1978), (often referred

to as the DEA-CCR model) the efficiency of the DMUp is defined as follows.

Model (1) intput oriented - CRS model

Min θ

s.t.
n∑

j=1

λjxij ≤ θxip, i=1,...,m

n∑

j=1

λjyrj ≥ yrp, r=1,...,s

λj ≥ 0, j=1,...,n.

(1)

If is the optimum value, then DMUp is said to be efficient .The DEA Model

(1) is known as an input- oriented model. An input oriented model defines a

unit to be ”relatively inefficient” with respect to a sample when it is clear that
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other units in the sample could be producing the same level of outputs as the

unit in question, while consuming less inputs. Conversely, an output oriented

model classifies a unit to be ”relatively inefficient” if other units in the sample

are able to produce a higher level of outputs with the same level of inputs

as the unit in question. Additionally, models can stipulate either constant or

variable return to scale. A constant return to scale model assumes that for

a given unit, output levels are always proportional to the level of inputs; on

the other hand, a variable return to scale model allows for the level of outputs

grow proportionally higher or lower than a corresponding increase in inputs.

2.2 Balanced Scorecard

In today,s complex competitive environment, firms need to be agile and flexi-

ble. As a result, availability of the right information at the right time for both

decision making and performance evaluation has become critical. A popular

performance measurement scheme suggested by Kaplan and Norton (1992)

is the balanced scorecard that employs performance metrics from financial,

customer, business process, and technology perspectives. By combining these

different perspectives, the balanced scorecard helps managers understand the

interrelationships and tradeoffs between alternative performance dimensions

and leads to improved decision making and problem solving. As can be seen

from Fig. 1, the intention of the BSC approach was to translate the vision and

strategy of a business unit into objectives and measures in four different ar-

eas: the financial, customer, internal business-process and learning and growth

perspectives.

1-Customer perspective: The aim is to identify the customer and market

segments in which the business unit will compete and the measures of the

business unit’s performance in these targeted segments.

2- Internal perspective: The measures focus on the internal processes that

will have the greatest impact on customer satisfaction and achieving an orga-

nization’s financial objectives.

3- Innovation and learning perspective: It identifies the infrastructure that

the organization must build to create long-term growth and improvement.

4- Financial perspective: It is valuable in summarizing the readily measur-

able economic consequences of actions already taken. It indicates whether a

company’s strategy, implementation, and execution are contributing to bottom-

line improvement .

Through the years, the Balanced Scorecard has evolved, from the perfor-

mance measurement tool originally introduced by Kaplan and Norton (1992),
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to a tool for implementing strategies (Kaplan and Norton, 1996) and a frame-

work for determining the alignment of an organisation’s human, information

and organisation capital with its strategy (Kaplan and Norton, 2004a)

3 the methodology combined Network DEA

and BSC

Most researches showed that BSC is a useful technique to calculate perfor-

mance measures. Ziegenfuss (2000), demonstrated the use of the “Balanced

Scorecard” methodology in selecting performance measures for internal audit-

ing departments. And we know ,DEA presents a model for evaluating the

performance of a set of comparable decision making units (DMUs). Each

DMU is evaluated in terms of a set of outputs that represent its successes, and

a set of inputs that represent the resources .but we want combined this two

methodology for evaluated organization . DEA can be a useful tool in setting

benchmarks and evaluating BSC results. The organizations were evaluated

via the BSC-DEA model, where each organization is expressed by inputs as

resources and outputs as objectives to be attained. In this study is to find

out the relationships among four output perspectives. For such an objective,

a structure equation model is employed to test the interrelationships of all

the variables in the entire model. The proposed structural equation model is

shown in Figure 1.

The DEA-BSC model generalizes this model, To get the strategic orienta-

tion, it relies on the BSC methodology, which provides a systemization concept

where strategic objectives are formulated looking from several different per-

spectives [5]. This systemization checks whether all the important aspects are

measured and it elucidates compensation effects between measures. For each

objective, one or more measures are formulated. While some objectives are

formulated into quantitative measures, other can be measured using only qual-

itative measures. Using the BSC methodology, a prespective (card) is defined

to be a group of measures. The BSC structure is comprised of four perspectives

, which represent four mutually exclusive groups of measures. The ,,highest

hierarchy level includes a single card, denoted by Co which includes all existing

output measures and we called strategy .
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Fig1-combined BSC and DEA model
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The next

level includes the four perspectives C1...C4 . In order to reflect the desired

balance, a decision maker can set limits on what may be regarded as suitable

lower and upper bounds for the relative importance on each card. If we show

lower and upper bounds with Lck and Uck we will have:
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Lck ≤

∑

r∈ck

urYrp

∑

r∈co

uiyrp

≤ Uckk = 1...4

Lck ≤

∑

i∈ck

vrxip

∑

i∈co

vixip

≤ Uckk = 1...4

Now we want introduce the mathematical formulations of the proposed

network-DEA and bsc model and efficiency measures in this section. Following

the formulation of LP ( 1 ) shown earlier and limitation of ( 2 ) , we limit our

discussion to the output-oriented measure only, and the technology is assumed

to exhibit constant returns-to-scale (CRS). (we know a DEA Model is output

oriented if it seeks to increase outputs without increasing inputs. Our approach

to the Network DEA Model is an extension of that used in the four-stage DEA

Model.

The network DEA model of fig( 3 ) can be formalized and thats Model is

a linear program and has a dual. When the redundant constraints model are

eliminated, it can be formulated as:( we Suppose, lower and upper bounds in

four stages balanced scored card are presented in Table 1).

L and G L and G I.P I.P C C F F

lowerandupper lower upper lower upper lower upper lower upper

0.2 0.4 0.3 0.6 0.2 0.4 0.2 0.5

Table 1. Balance bounds used for prespectives.
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Fig2-combined BSC and DEA model

n∑

j=1

γj
5
2yrj ≤ (0.2μ9 + 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16 + 1)5
2yrp

n∑

j=1

βj
5
3yrj ≤ (0.2μ9 + 0.3μ10 + 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16 + 1)5
3yrp

n∑

j=1

αj
5
4yrj ≤ (0.2μ9 + 0.3μ10 + 0.2μ11 + 0.8μ12 − 0.4μ13 − 0.6μ14 − 0.4μ15 +

0.5μ16 + 1)5
4yrp

n∑

j=1

λj
1
0xij ≤ (0.8μ1−0.3μ2−0.2μ3−0.2μ4−0.6μ5+0.6μ6+0.4μ7+0.5μ8+

θ)1
0xip

n∑

j=1

γj
2
0xij ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8 + θ)2
0xip
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n∑

j=1

βj
3
0xij ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +

0.5μ8 + θ)3
0xip

n∑

j=1

αj
4
0xij ≤ (−0.2μ1 − 0.3μ2 − 0.2μ3 + 0.8μ4 + 0.4μ5 + 0.6μ6 + 0.4μ7 −

0.5μ8 + θ)4
0xip

n∑

j=1

λj
2
1yrj ≤ (−0.9μ9 +0.3μ10 +0.2μ11 +0.2μ12 +0.6μ13−0.6μ14−0.4μ15−

0.5μ16)
2
1yrp

n∑

j=1

γj
2
1yrj ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8)
2
1yrp

n∑

j=1

γj
3
2yrj ≤ (0.2μ9 − 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16)
3
2yrp

n∑

j=1

βj
3
2yrj ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +

0.5μ8)
3
2yrp

n∑

j=1

βj
4
3yrj ≤ (+0.2μ9 + 0.3μ10 − 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16)
4
3yrp

n∑

j=1

αj
4
3yrj ≤ (−0.2μ1−0.3μ2−0.2μ3+0.8μ4+0.4μ5+0.6μ6+0.4μ7−0.5μ8)

4
3yrp

λj ≥ 0, αj ≥ 0, βj ≥ 0, γj ≥ 0, μj ≥ 0

There are fourteen constraints in this model, If θ = 1 and S+
i = S−

r = 0

,then the system is efficient. Multipliers λj, αj, βj , γj, μj are associated with

processes 1, 2, 3and 4.
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4 Interval Network DEA and BSC

In this section, our goal is to develop the previous section models on interval

dataSupposethat:xij = [xl
ij , x

u
ij], yrj = [yl

rj, y
u
rj],j = 1, ..., n, r = 1, ..., s, i =

1, ..., m, Assume that the feasible region of the problem ( 4 ) is called S1.

Now suppose thatDMUp has the highest possible input and the lowest

possible output, and the other of DMUs have the lowest possible inputs; and

the highest possible outputs i.e:(xl
ip, x

u
ip), (yl

rp, y
u
rp)j = 1, ..., n and j �= p The

problem (4) can be formolized as:

n∑

j=1

γj
5
2y

u
rj ≤ (0.2μ9 + 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16 + 1)5
2y

l
rp

n∑

j=1

βj
5
3y

u
rj ≤ (0.2μ9 + 0.3μ10 + 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16 + 1)5
3y

l
rp

n∑

j=1

αj
5
4y

u
rj ≤ (0.2μ9 + 0.3μ10 + 0.2μ11 + 0.8μ12 − 0.4μ13 − 0.6μ14 − 0.4μ15 +

0.5μ16 + 1)5
4y

l
rp

n∑

j=1

λj
1
0x

l
ij ≤ (0.8μ1−0.3μ2−0.2μ3−0.2μ4−0.6μ5+0.6μ6+0.4μ7+0.5μ8+

θ)1
0x

u
ip

n∑

j=1

γj
2
0x

l
ij ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8 + θ)2
0x

u
ip

n∑

j=1

βj
3
0x

l
ij ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +

0.5μ8 + θ)3
0x

u
ip

n∑

j=1

αj
4
0x

l
ij ≤ (−0.2μ1 − 0.3μ2 − 0.2μ3 + 0.8μ4 + 0.4μ5 + 0.6μ6 + 0.4μ7 −

0.5μ8 + θ)4
0x

u
ip
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n∑

j=1

λj
2
1y

u
rj ≤ (−0.9μ9 +0.3μ10 +0.2μ11 +0.2μ12 +0.6μ13−0.6μ14−0.4μ15−

0.5μ16)
2
1yrpL

n∑

j=1

γj
2
1y

l
rj ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8)
2
1y

u
rp

n∑

j=1

γj
3
2y

u
rj ≤ (0.2μ9 − 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16)
3
2y

l
rp

n∑

j=1

βj
3
2y

l
rj ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +

0.5μ8)
3
2y

u
rp

n∑

j=1

βj
4
3y

u
rj ≤ (+0.2μ9 + 0.3μ10 − 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16)
4
3y

l
rp

n∑

j=1

αj
4
3y

l
rj ≤ (−0.2μ1−0.3μ2−0.2μ3+0.8μ4+0.4μ5+0.6μ6+0.4μ7−0.5μ8)

4
3y

u
rp

λj ≥ 0, αj ≥ 0, βj ≥ 0, γj ≥ 0, μj ≥ 0

Assume that the feasible region of the problem ( 5 ) is called S2.

Now suppose that DMUp has the lowest possible input and the highest

possible output, and the other of DMUs have the highest possible inputs; and

the lowest possible outputs, i.e: (xl
ip, x

u
ip) , (yl

rp, y
u
rp)j = 1, ..., n and j �= p The

problem ( 4 )can be formolized as:

n∑

j=1

γj
5
2y

l
rj ≤ (0.2μ9 + 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16 + 1)5
2y

u
rp
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n∑

j=1

βj
5
3y

l
rj ≤ (0.2μ9 + 0.3μ10 + 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16 + 1)5
3y

u
rp

n∑

j=1

αj
5
4y

l
rj ≤ (0.2μ9 + 0.3μ10 + 0.2μ11 + 0.8μ12 − 0.4μ13 − 0.6μ14 − 0.4μ15 +

0.5μ16 + 1)5
4y

u
rp

n∑

j=1

λj
1
0x

u
ij ≤ (0.8μ1−0.3μ2−0.2μ3−0.2μ4−0.6μ5+0.6μ6+0.4μ7+0.5μ8+

θ)1
0x

l
ip

n∑

j=1

γj
2
0x

u
ij ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8 + θ)2
0x

l
ip

n∑

j=1

βj
3
0x

u
ij ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +

0.5μ8 + θ)3
0x

l
ip

n∑

j=1

αj
4
0x

u
ij ≤ (−0.2μ1 − 0.3μ2 − 0.2μ3 + 0.8μ4 + 0.4μ5 + 0.6μ6 + 0.4μ7 −

0.5μ8 + θ)4
0x

l
ip

n∑

j=1

λj
2
1y

l
rj ≤ (−0.9μ9 +0.3μ10 +0.2μ11 +0.2μ12 +0.6μ13−0.6μ14−0.4μ15−

0.5μ16)
2
1y

u
rp

n∑

j=1

γj
2
1y

u
rj ≤ (−0.2μ1 + 0.7μ2 − 0.2μ3 − 0.2μ4 + 0.4μ5 − 0.4μ6 + 0.4μ7 +

0.5μ8)
2
1y

l
rp

n∑

j=1

γj
3
2y

l
rj ≤ (0.2μ9 − 0.7μ10 + 0.2μ11 + 0.2μ12 − 0.4μ13 + 0.4μ14 − 0.4μ15 −

0.5μ16)
3
2y

u
rp

n∑

j=1

βj
3
2y

u
rj ≤ (−0.2μ1 − 0.3μ2 + 0.8μ3 − 0.2μ4 + 0.4μ5 + 0.6μ6 − 0.6μ7 +
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0.5μ8)
3
2y

l
rp

n∑

j=1

βj
4
3y

l
rj ≤ (+0.2μ9 + 0.3μ10 − 0.8μ11 + 0.2μ12 − 0.4μ13 − 0.6μ14 + 0.6μ15 −

0.5μ16)
4
3y

u
rp

n∑

j=1

αj
4
3y

u
rj ≤ (−0.2μ1−0.3μ2−0.2μ3+0.8μ4+0.4μ5+0.6μ6+0.4μ7−0.5μ8)

4
3y

l
rp

λj ≥ 0, αj ≥ 0, βj ≥ 0, γj ≥ 0, μj ≥ 0

Assume that the feasible region of the problem (6) is called S3.

Theorem:Ifθ∗, θl∗andθu∗ are the optimal values of the problems (4 )

, ( 5 ) and(6)respectively and for each i , j and r, :xij = [xl
ij , x

u
ij ], yrj =

[yl
rj, y

u
rj], then, θl∗≤θ∗ ≤ θu∗

Proof: since the problem; ( 4)is minimized, and this have objective function

, thus in order to proof θl∗≤θ∗ ≤ θu∗ , we should just enough proof that:s3 ⊂
s1 ⊂ s2 . First we proof that s3 ⊂ s1 , Assume (λ, θ)εs3 so:

therfor

n∑

j=1,j �=p

λj
5
1y

l
rj + λj

5
1y

u
rp ≥ φ1

n∑

j=1

λj
5
1y

u
rp =⇒ (φ1 − λj)λj

5
1y

u
rp ≤

n∑

j=1,j �=p

λj
5
1y

l
rj

=⇒ (φ1 − λj)λj
5
1y

u
rp ≤

n∑

j=1,j �=p

λj
5
1yrj =⇒

n∑

j=1,j �=p

λj
5
1yrj ≥ (φ1 − λj)λj

5
1yrp

=⇒
n∑

j=1,j �=p

λj
5
1yrj ≥ (φ1 − λj)λj

5
1yrp =⇒

n∑

j=1

λj
5
1yrj ≥ φ1

5
1yrp
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therfor

n∑

j=1,j �=p

γj
5
2y

l
rj + γj

5
2y

u
rp ≥ φ1

n∑

j=1

γj
5
2y

u
rp =⇒ (φ1 − γj)γj

5
2y

u
rp ≤

n∑

j=1,j �=p

γj
5
2y

l
rj

=⇒ (φ1 − γj)γj
5
2y

u
rp ≤

n∑

j=1,j �=p

γj
5
2yrj =⇒

n∑

j=1,j �=p

γj
5
2yrj ≥ (φ1 − γj)γj

5
2yrp

=⇒
n∑

j=1,j �=p

γj
5
2yrj ≥ (φ1 − γj)λj

5
1yrp =⇒

n∑

j=1

γj
5
2yrj ≥ φ1

5
2yrp

therfor
n∑

j=1,j �=p

βj
5
3y

l
rj + βj

5
3y

u
rp ≥ φ1

n∑

j=1

βj
5
3y

u
rp =⇒ (φ1 − βj)βj

5
3y

u
rp ≤

n∑

j=1,j �=p

βj
5
2y

l
rj

=⇒ (φ1 − βj)
5
3y

u
rp ≤

n∑

j=1,j �=p

βj
5
3yrj =⇒

n∑

j=1,j �=p

βj
5
3yrj ≥ (φ1 − βj)

5
3yrp

=⇒
n∑

j=1,j �=p

βj
5
3yrj ≥ (φ1 − βj)

5
3yrp =⇒

n∑

j=1

βj
5
3yrj ≥ φ1

5
3yrp
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therfor

n∑

j=1,j �=p

αj
5
4y

l
rj + αj

5
4y

u
rp ≥ φ4

n∑

j=1

βj
5
4y

u
rp =⇒ (φ4 − αj)

5
4y

u
rp ≤

n∑

j=1,j �=p

αj
5
4y

l
rj

=⇒ (φ4 − αj)
5
4y

u
rp ≤

n∑

j=1,j �=p

αj
5
4yrj =⇒

n∑

j=1,j �=p

αj
5
4yrj ≥ (φ1 − αj)

5
4yrp

=⇒
n∑

j=1,j �=p

βj
5
4yrj ≥ (φ1 − αj)

5
4yrp =⇒

n∑

j=1

αj
5
4yrj ≥ φ4

5
4yrp

therfor

n∑

j=1,j �=p

λj
1
0x

u
ij + λj 01xl

ip ≤ (φ5 + θ) 1
0x

l
ip =⇒

n∑

j=1,j �=p

λj
1
0x

u
ij ≤

(φ5 + θ − λj)
1
0x

l
ip =⇒

n∑

j=1,j �=p

λj
1
0x

u
ij ≤ (φ5 + θ − λj)

1
0xip =⇒

(φ5 + θ − λj)
1
0xip ≥

n∑

j=1,j �=p

λj
1
0x

u
ij =⇒

(φ5 + θ − λj)
1
0xip ≥

n∑

j=1,j �=p

λj
1
0xij =⇒
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n∑

j=1

λj
1
0x

u
ij ≤ (φ5 + θ) 1

0xip

therfor

n∑

j=1,j �=p

γj
2
0x

u
ij + γj 02xl

ip ≤ (φ6 + θ) 2
0x

l
ip =⇒

n∑

j=1,j �=p

γj
2
0x

u
ij ≤ (φ5 +

θ − γj)
2
0x

l
ip =⇒

n∑

j=1,j �=p

λj
2
0x

u
ij ≤ (φ6 + θ − γj)

2
0xip =⇒

(φ6 + θ − γj)
2
0xip ≥

n∑

j=1,j �=p

γj
2
0x

u
ij =⇒

(φ6 + θ − γj)
2
0xip ≥

n∑

j=1,j �=p

λj
2
0xij =⇒

n∑

j=1

γj
2
0x

u
ij ≤ (φ6 + θ) 2

0xip

therfor
n∑

j=1,j �=p

βj
3
0x

u
ij + βj 03xl

ip ≤ (φ7 + θ) 3
0x

l
ip =⇒

n∑

j=1,j �=p

βj
3
0x

u
ij ≤

(φ7 + θ − βj)
3
0x

l
ip =⇒

n∑

j=1,j �=p

λj
3
0x

u
ij ≤ (φ7 + θ − βj)

3
0xip =⇒

(φ7 + θ − βj)
3
0xip ≥

n∑

j=1,j �=p

βj
3
0x

u
ij =⇒

(φ7 + θ − βj)
3
0xip ≥

n∑

j=1,j �=p

βj
3
0xij =⇒
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n∑

j=1

βj
3
0x

u
ij ≤ (φ7 + θ) 3

0xip

therfor
n∑

j=1,j �=p

αj
4
0x

u
ij + βj 04xl

ip ≤ (φ8 + θ) 3
0x

l
ip =⇒

n∑

j=1,j �=p

αj
4
0x

u
ij ≤

(φ8 + θ − αj)
4
0x

l
ip =⇒

n∑

j=1,j �=p

αj
4
0x

u
ij ≤ (φ8 + θ − αj)

4
0xip =⇒

(φ7 + θ − βj)
4
0xip ≥

n∑

j=1,j �=p

αj
4
0x

u
ij =⇒

(φ8 + θ − αj)
4
0xip ≥

n∑

j=1,j �=p

αj
4
0xij =⇒

n∑

j=1

αj
4
0x

u
ij ≤ (φ8 + θ) 4

0xip

therfor
n∑

j=1,j �=p

λj
2
1y

l
rj + λj

2
1y

u
rp ≥ φ9

n∑

j=1

λj
2
1y

u
rp =⇒ (φ9 − αj)

2
1y

u
rp ≤

n∑

j=1,j �=p

λj
2
1y

l
rj

=⇒ (φ9 − λj)
2
1y

u
rp ≤

n∑

j=1,j �=p

λj
2
1yrj =⇒

n∑

j=1,j �=p

λj
2
1yrj ≥ (φ9 − λj)

2
1yrp

=⇒
n∑

j=1,j �=p

λj
2
1yrj ≥ (φ9 − λj)

2
1yrp =⇒
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n∑

j=1

λj
2
1yrj ≥ φ9

2
1yrp

therfor
n∑

j=1,j �=p

γj
2
1y

l
rj + γj

2
1y

u
rp ≤ φ10

n∑

j=1

λj
2
1y

u
rp =⇒ (φ10 − αj)

2
1y

u
rp ≥

n∑

j=1,j �=p

γj
2
1y

l
rj

=⇒ (φ10 − γj)
2
1y

u
rp ≥

n∑

j=1,j �=p

γj
2
1yrj =⇒

n∑

j=1,j �=p

γj
2
1yrj ≤ (φ10 − γj)

2
1yrp

=⇒
n∑

j=1,j �=p

γj
2
1yrj ≤ (φ10 − γj)

2
1yrp =⇒

n∑

j=1

γj
2
1yrj ≤ φ10

2
1yrp

therfor
n∑

j=1,j �=p

γj
3
2y

l
rj + γj

3
2y

u
rp ≥ φ11

n∑

j=1

γj
3
2y

u
rp =⇒ (φ11 − γj)βj

3
2y

u
rp ≤

n∑

j=1,j �=p

βj
3
2y

l
rj

=⇒ (φ11 − βj)
3
2y

u
rp ≤

n∑

j=1,j �=p

βj
3
2yrj =⇒

n∑

j=1,j �=p

γj
3
2yrj ≥ (φ11 − γj)

3
2yrp
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=⇒
n∑

j=1,j �=p

βj
3
2yrj ≥ (φ11 − γj)

5
3yrp =⇒

n∑

j=1

γj
3
2yrj ≥ φ11

3
2yrp

therfor

n∑

j=1,j �=p

βj
3
2y

l
rj + βj

3
2y

u
rp ≤ φ12

n∑

j=1

βj
3
2y

u
rp =⇒ (φ12 − βj)βj

3
2y

u
rp ≥

n∑

j=1,j �=p

βj
3
2y

l
rj

=⇒ (φ12 − βj)
3
2y

u
rp ≥

n∑

j=1,j �=p

βj
3
2yrj =⇒

n∑

j=1,j �=p

βj
3
2yrj ≤ (φ12 − βj)

3
2yrp

=⇒
n∑

j=1,j �=p

βj
3
2yrj ≤ (φ12 − βj)

5
3yrp =⇒

n∑

j=1

βj
3
2yrj ≤ φ12

3
2yrp

therfor

n∑

j=1,j �=p

βj
4
3y

l
rj + βj

4
3y

u
rp ≥ φ13

n∑

j=1

βj
4
3y

u
rp =⇒ (φ13 − βj)βj

4
3y

u
rp ≤

n∑

j=1,j �=p

βj
4
3y

l
rj

=⇒ (φ13 − βj)βj
4
3y

u
rp ≤

n∑

j=1,j �=p

βj
4
3yrj =⇒
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n∑

j=1,j �=p

βj
4
3yrj ≥ (φ13 − βj)βj

4
3yrp

=⇒
n∑

j=1,j �=p

βj
4
3yrj ≥ (φ13 − βj)λj

4
3yrp =⇒

n∑

j=1

βj
4
3yrj ≥ φ13

4
3yrp

now ,

therfor

n∑

j=1,j �=p

αj
4
3y

u
rj + βj

4
3y

l
rp ≤ φ14

n∑

j=1

αj
4
3y

l
rp =⇒ (φ13 − βj)αj

4
3y

u
rp ≥

n∑

j=1,j �=p

αj
4
3y

l
rj

=⇒ (φ14 − αj)βj
4
3y

u
rp ≤

n∑

j=1,j �=p

αj
4
3yrj =⇒

n∑

j=1,j �=p

αj
4
3yrj ≥ (φ14 − αj)αj

4
3yrp

=⇒
n∑

j=1,j �=p

αj
4
3yrj ≥ (φ14 − αj)λj

4
3yrp =⇒

n∑

j=1

αj
4
3yrj ≥ φ14

4
3yrp

Thus, we conclued from (1) to (19) that:(λ, θ)εs3then s3 ⊂ s1the amount

of objective function wont be better i.e,θ∗ ≤ θu∗.
now we proof that s1 ⊂ s2, Assume(λ, θ)εs1 so ;

n∑

j=1,j �=p

λj
5
1y

u
rj ≥ (φ1 − λj)

5
1y

l
rp =⇒

n∑

j=1,j �=p

λj
5
1y

u
rj + λj

5
1y

l
rp ≥ φ1

5
1y

l
rp
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n∑

j=1,j �=p

γj
5
2y

u
rj ≥ (φ2 − γj)

5
2y

l
rp =⇒

n∑

j=1,j �=p

γj
5
2y

u
rj + γj

5
2y

l
rp ≥ φ2

5
2y

l
rp

n∑

j=1,j �=p

βj
5
3y

u
rj ≥ (φ3 − βj)

5
3y

l
rp =⇒

n∑

j=1,j �=p

βj
5
3y

u
rj + βj

5
3y

l
rp ≥ φ3

5
3y

l
rp

n∑

j=1,j �=p

αj
5
4y

u
rj ≥ (φ4 − αj)

5
4y

l
rp =⇒

n∑

j=1,j �=p

αj
5
4y

u
rj + αj

5
4y

l
rp ≥ φ4

5
4y

l
rp

n∑

j=1,j �=p

λj
1
0x

l
ij ≤ (φ5+θ−λj)

1
0x

u
ip =⇒

n∑

j=1,j �=p

λj
1
0x

l
ij +λj

1
0xip ≤ (φ5+θ) 1

0x
u
ip
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n∑

j=1,j �=p

γj
2
0x

l
ij ≤ (φ6 +θ−γj)

2
0x

u
ip =⇒

n∑

j=1,j �=p

γj
2
0x

l
ij +γj

2
0xip ≤ (φ6 +θ) 2

0x
u
ip

n∑

j=1,j �=p

βj
3
0x

l
ij ≤ (φ7+θ−βj)

3
0x

u
ip =⇒

n∑

j=1,j �=p

βj
3
0x

l
ij +βj

3
0xip ≤ (φ7+θ) 3

0x
u
ip

n∑

j=1,j �=p

αj
4
0x

l
ij ≤ (φ8+θ−αj)

4
0x

u
ip =⇒

n∑

j=1,j �=p

αj
3
0x

l
ij +αj

4
0xip ≤ (φ8+θ) 4

0x
u
ip

n∑

j=1,j �=p

λj
2
1y

u
rj ≥ (φ9 − λj)

2
1y

l
rp =⇒

n∑

j=1,j �=p

λj
2
1y

u
rj + λj

2
1y

l
rp ≥ φ9

2
1y

l
rp

n∑

j=1,j �=p

γj
2
1y

u
rj ≥ (φ10 − γj)

2
1y

l
rp =⇒

n∑

j=1,j �=p

γj
2
1y

u
rj + γj

2
1y

l
rp ≥ φ10

2
1y

l
rp



Combined interval net DEA and BSC 1997

n∑

j=1,j �=p

γj
3
2y

u
rj ≥ (φ11 − γj)

3
2y

l
rp =⇒

n∑

j=1,j �=p

γj
3
2y

u
rj + γj

3
2y

l
rp ≥ φ11

3
2y

l
rp

n∑

j=1,j �=p

βj
3
2y

u
rj ≥ (φ12 − βj)

3
2y

l
rp =⇒

n∑

j=1,j �=p

βj
3
2y

u
rj + βj

3
2y

l
rp ≥ φ12

3
2y

l
rp

n∑

j=1,j �=p

βj
4
3y

u
rj ≥ (φ13 − βj)

4
3y

l
rp =⇒

n∑

j=1,j �=p

βj
4
3y

u
rj + βj

4
3y

l
rp ≥ φ13

4
3y

l
rp

n∑

j=1,j �=p

αj
4
3y

u
rj ≥ (φ14 − αj)

4
3y

l
rp =⇒

n∑

j=1,j �=p

αj
4
3y

l
rj + αj

4
3y

u
rp ≥ φ14

4
3y

u
rp

Thus, we conclued from (20) to (33) that:(λ, θ)εs2 thens2 ⊂ s1. so the

amount of objective function wont be better i.e,θu∗ ≤ θ∗.
we conclued from (B1 ) and ( B2 )that,θ ∈ [θl∗, θu∗]



1998 F. Hosseinzadeh Lotfi et al

5 conclusion

The BSC-DEA methodology was designed to accommodate uncertain and

qualitative data. Since nonfinancial performance measures, which are qual-

itative measures, become important it is necessary for decision makers to use

techniques that can include measures in evaluation process.In this paper we

have extended the integrated net DEA and BSC for efficiency indexes of DMUs

with interval inputs and outputs. The precise data are the special case of in-

terval data. So, we are allowed to consider all changes Occurred within the

prossess of sub- DMUs when the efficiency of a DMU is evaluated . Based

on the proved theorems, the efficiency value of DMUs with interval data in

network DEA lies in a interval .
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