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Abstract 

 
In this paper, we investigate peristaltic transport of a micropolar fluid in a 
channel when no slip boundary condition is inadequate. The long wavelength and 
low Reynolds number approximations are used to get solution. The effects of 
coupling number, micropolar parameter and slip parameter on pumping region, 
friction force and trapping are analyzed and presented by graphs. It is found that 
the pumping region increases with increasing coupling number while it decreases 
with increasing micropolar parameter and slip parameter. The size of trapped 
bolus increases by increasing coupling number and micropolar parameter while it 
decreases by increasing slip parameter. 
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1. Introduction 
 
The mechanism involved in transportation of bio fluids from one place to another 
due to muscular contraction or expansion of tube/channel containing the fluid, is 
called peristalsis. Peristalsis is used in urine flow from kidney to blader, 
swallowing food through the esophagus, movement of chyme in gastro-intestinal 
tract, intra-uterine fluid motion, flow of spermatozoa in the ductus efferentes of 
the male reproductive tract, movement of ovum in the female fallopian tube, 
transport of lymph in the lymphatic vessels and the vasomotion of small blood 
vessels such arterioles, venules and capillaries. Some worms also use peristaltic 
motion as a means of locomotion. Roller and finger pumps also operate on this 
principle. 
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      From first investigation made by Latham [15], peristalsis has attracted several 
researchers due to its great application in engineering and physiology. Shapiro et 
al. [2] studied the peristaltic flow of Newtonian fluid through channel and tube 
under long wavelength and low Reynolds number assumptions in wave frame of 
reference. Fung and Yih [17], Yin and Fung [4] studied the peristaltic flow of 
Newtonian fluid through channel and tube respectively using perturbation 
technique in laboratory frame of reference. The behavior of most of the 
physiological fluids is known to be non-Newtonian. The model of micropolar 
fluid introduced by Eringen [1] represents fluids consisting of rigid, randomly 
oriented (or spherical) particles suspended in a viscous medium where the 
deformation of the particles is ignored. Micropolar fluids exhibit some 
microscopic effects arising from the local structure and micromotion of the fluid 
elements. Furthermore, they can sustain couple stresses. The micropolar fluid is 
considered to model the blood flow in small arteries and the calculation of 
theoretical velocity profiles is observed in good agreement with the experimental 
data. Several researchers [5, 6, 8-11, 13, 14] contributed towards the study of 
peristaltic transport of micropolar fluid under different situations assuming no 
slip boundary condition at walls of the vessels. 
   But, in real system there is always a certain amount of slip and no slip boundary 
condition is no longer valid. Many studies [3, 7, 12, 16] are made to investigate 
slip effect on peristaltic transport of fluids. However, to the our best knowledge, 
no attentions are given to analyze slip effect on peristaltic transport of micropolar 
fluid. So in this study we analyze the effect of slip boundary condition on 
peristaltic transport of micropolar fluid in a channel.  
 
 
2. Mathematical Formulation 
 
We consider peristaltic transport of a micropolar fluid in a channel of width a2 . 
Let the motion of the walls of the channel be governed by sinusoidal wave, then 

( )ctXbaH −+=
λ
π2sin                                                                                      (1) 

where cb ,,λ are amplitude, wavelength and velocity of the wave and t is time. 
The flow is unsteady in the laboratory frame ( )YX ,  and steady in the wave 
frame ( )yx,  moving with velocity c . The relation between laboratory frame and 
wave frame is given by 
    .,,, VvcUuYyctXx =−==−=                                                            (2) 
In the absence of body force and body couple, the governing equations of steady 
flow of an incompressible micropolar fluid are 

,0. =∇ v                                                                                                                 (3) 

( ) ( ) vwpvv 2. ∇++×∇+−∇=∇ κμκρ ,                                                                (4) 

( ) ( ) ( ) ( )..2. wwvwwvj ∇∇+++×∇×∇−×∇+−=∇ γβαγκκρ                             (5) 
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where ρ,,, pwv and j are the velocity vector, the microrotation vector, the fluid 
pressure, the fluid density and microgyration parameter. The material constants 

βακμ ,,, and γ  satisfy [5]: 
          .,03,0,02 βγγβακκμ ≥≥++≥≥+                                            (6) 

We take the velocity vector ( )0,,vuv = and microrotation vector ( )ww ,0,0= . We 
nondimensionalize the variables as follows: 
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where eR  is the Reynolds number and δ is the wave number. 
Using these nondimensional variables in Eqs. (1), (3),(4) and (5) and primes and 
applying low Reynolds number and long wavelength approximation, we get 
( ) xxh πφ 2sin1+= ,                                                                                            (8) 
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where ( )κμκ += /N is the coupling number ( )10 ≤≤ N ( ) ( )κμγκμκ ++= /222 aM  
is the micropolar parameter. 
In the wave frame the boundary conditions are: 

.0,0 ==
∂
∂ w

y
u  at .0=y                                                                       (13) 

.0,1 =
∂
∂

−= w
y
uu βm     at hy ±= .                                                                      (14) 

where ( )aL /=β  is the dimensionless slip parameter and L is the dimensional 
slip parameter. 
 
 
3. Solution 
 
From Eq. (11) it is clear that p does not depend on y , so Eq. (10) may be written 
as 

( ) ⎥⎦
⎤

⎢⎣
⎡ −−

∂
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=
∂
∂ wN

dx
dpyN

yy
u 12

2

         (15)                                  

Integrating Eq. (15) w.r. to y , we get 



2108                                                  M. K. Chaube, S. K. Pandey and D. Tripathi 
 
 

( ) ( )xCwN
dx
dpyN

y
u

11 +−−=
∂
∂                                                                         (16) 

where ( )xC1  is constant of integration. 
Using boundary condition (13) in Eq. (16) we get ( ) 01 =xC , so Eq. (16) becomes 

( ) wN
dx
dpyN

y
u

−−=
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Putting the value of ( )yu ∂∂ / from Eq. (17) in Eq. (12), we get 
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The general solution of above equation may be written as 
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Using Eq. (19) in Eq. (17), we get 
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where 2C , 3C , 4C are integrating constants, which are evaluated by using the 
boundary conditions (13) & (14). Thus the resulting solutions are given by 
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The corresponding stream function ψ  is given by 
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Using (23) and (21) we get 
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The nondimensional mean flow in wave frame is given by 

∫ +−==
h

hdyuq
0

( )hf
dx
dp

N
N
⎟
⎠
⎞

⎜
⎝
⎛

−
−

2
1                                                                   (25) 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ +++−−= MhhhMMhMhMhNMh

M
N

MhM
hhhf sinh2coshsinhsinh

sinh3

3

ββ (26)                                   

The relation between the dimensionless mean flow Θ in laboratory frame and 
q in wave frame is 
   1+=Θ q                                                                                                          (27) 
From Eq. (25) we get 
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The non-dimensional pressure rise per wavelength pΔ and the friction force F at 
the wall are 
 

∫ ⎟
⎠
⎞

⎜
⎝
⎛=Δ

1

0

dx
dx
dpp                                                                                                    (29) 

∫ ⎟
⎠
⎞

⎜
⎝
⎛−=

1

0

dx
dx
dphF                                                                                                 (30) 

 
 
4. Numerical results and discussion 
 
In this section, we have carried out numerical calculations and plotted graphs to 
study effects of the coupling number N , the micropolar parameter M and the slip 
parameter β on the pumping region, the friction force at the wall and the trapping 
phenomenon. In the case of free pumping that is when 0=Δp , the corresponding 
time mean flow rate is denoted by 0Θ .The maximum pressure against which the 
peristalsis work as a pump, that is, pΔ corresponding to 0=Θ  is denoted by 

0p .In the case of copumping that is when 0<Δp , the pressure assist the flow. 
   Figs. 1-3 show the variation of pressure rise pΔ  with flow rate Θ for various 
values of coupling number N , micropolar parameter M and slip parameterβ  
respectively. It is observed that the pumping region ( )00 pp ≤Δ≤  increases as 
the coupling number N  increases while it decreases as the micropolar parameter 
M and the slip parameterβ  increase. Moreover the pumping region is more for a 
micropolar fluid in comparison to that of a Newtonian fluid. 
      Figs. 4-6 present the variation of friction force F  with flow rate Θ for 
various values of coupling number N , micropolar parameter M and slip 
parameterβ  respectively. From these figures it is noted that there exists a critical 
value of Θ below which F resists the flow and above which F assist the flow. 
Below this critical value ofΘ , the friction force F increases as N , M and β  
increase. However, above this critical value ofΘ , the friction force F decreases 
as N , M and β  increase. 
       Trapping is an interesting phenomenon in peristaltic motion in which an 
internally circulating bolus of fluid is formed by closed streamlines and this 
trapped bolus is pushed ahead along with the peristaltic wave. the effects of 
coupling number N , micropolar parameter M and slip parameterβ  can be seen 
through Figs.7- 9 . A general observation regarding the effects of N and M is 
that the trapped bolus increases in size as N and M increase. However, the size 
of the trapped bolus decreases in size as β  increases. 
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6. Conclusions 
 
 
   In this study the effect of slip condition on peristaltic flow of a micropolar fluid 
in a two dimensional channel have been analyzed under long wave length and 
low Reynolds number approximations. The   effects of the coupling number N , 
the micropolar parameter M and the slip parameter β  on the pumping region, 
the friction force at the wall and the trapping phenomenon have been discussed in 
detail. The main findings of the present study are given in the following points:  
 
 
•  The peristaltic pumping region narrows down by increasing the micropolar    
    parameter M and the slip parameterβ .However, it widens by increasing the         
    coupling number N . 
 
•  The friction force F increases by increasing N , M and β  below the critical  
     value of Θ . However, above this critical value of Θ , F decreases by 
     increasing N , M andβ . 
 
•  The size of trapped bolus increases by increasing N and M while it decreases  
     by increasingβ . 
 
•  The results for Newtonian fluid without slip can be obtained as the special  
     cases of our analysis by choosing 0,0 == βN . 
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Fig.1 Pressure rise versus flow rate for 0.2,4.0 == Mφ  and 0=β . 
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Fig.2 Pressure rise versus flow rate for 8.0,4.0 == Nφ  and 0=β . 
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Fig.3 Pressure rise versus flow rate for 0.2,4.0 == Mφ  and 8.0=N . 
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Fig.4   The friction force at the wall versus flow rate for 10,4.0 == Mφ  and  
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Fig.5 The friction force at the wall versus flow rate for 8.0,4.0 == Nφ  and  

0=β . 
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Fig.6   The friction force at the wall versus flow rate for 10,4.0 == mφ  
and 8.0=N . 
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Fig.7 Streamlines for 0,4.0,0.2 === βφM  and 53.0=Q : a 0=N .b 4.0=N .  
       c 6.0=N . d 8.0=N . 
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Fig.8 Streamlines for 0,4.0,4.0 === βφN  and 53.0=Q : a 1.0=M . b 2=M .                         
        c 4=M . d 6=M . 
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Fig.9 Streamlines for 4,4.0,7.0 === MN φ  and 53.0=Q : a 0=β . b 02.0=β .       
         c 04.0=β . d 08.0=β . 
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