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Abstract

In this paper we well introduce a new decoding algorithm for gen-
eralized parallel concatenated block codes(GPCB). We are interested
in decoding generalized parallel concatenated block codes based on two
systematic one step majority logic decoding (OSMLD) codes using a soft
output version of threshold algorithm with Lucas’s connexion scheme.
The effects of various component codes, interleaver size (Number of
sub-blocks), interleaver pattern, and the number of iterations are in-
vestigated. The simulation results show that the slope of curves and
coding gain are improved by increasing the number of iterations and/or
the interleaver size. Proposed decoding scheme provides a performance
near the Shannon limit as it is evident from simulation results.

Keywords: Parallel concatenated block codes, OSMLD codes, iterative
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1 Introduction

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajshima
[1] as a class of concatenated codes. To construct the turbo codes they used
concatenated recursive convolutional codes with an interleaver inserted be-
tween the two recursive convolutional encoders. In 1994, R.Pyandiah [5]
adopted this process for the product block codes using as component decoder a
soft output version of Chase decoder, in 1998, Lucas applied the same process
for several families of block codes(e g OSMLD) using the soft output version
of Harthman/Rudolph as a component decoder.
Belkasmi et al [2] have presented an iterative decoding algorithm based on a
SISO extension form of Massey algorithm [4]. In this work they use an itera-
tive decoding process applied to decode parallel concatenated OSMLD codes
and using Pyndiah’s connexion scheme. In this perspective we present a gen-
eralisation of Belkasmi’s [2] work using Lucas’s connexion scheme.
In this paper, section 2 describes the encoder structure and definition of the
generalized parallel concatenated block codes. Section 3 presents the compo-
nent decoder. Section 4 describes the iterative decoding of the GPCB codes.
The simulation results are given in section 5. Section 6 concludes this paper.

2 Generalized Parallel concatenated block codes

The structure of parallel concatenated block codes is shown in figure 1, two
linear block encoders are linked through an interleaver of length k, so that ev-
ery block of k information bits entering the second encoder is just a permuted
version of the block that entered the first encoder. The PCB codeword is then
formed by adding to the input information bits the parity-check bits generated
by the first and the second encoder.

Figure 1: Encoder structure of parallel concatenated block (PCB) codes
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Figure 2 shows the structure of generalized parallel concatenated block codes.
This construction was introduced independently by Nilson et al [9] and Benedetto
et al [10]. A block of N data bits at the input of the GPCB encoder is sub-
divided into M sub-blocks. Each sub-block of length k is encoded using a
component encoder in order to produce parity check bits. The input block
is scrambled by the interleaver, denoted by Π, before entering the second en-
coder. The codeword of GPCB code consists of the input block followed by
the parity check bits of both encoders.
A systematic GPCB code is based on two systematic block component codes,
C1 with parameters (n1, k), and C2 with parameters (n2, k). The length of the
information word to be encoded by the GPCB code is given by the size of the
interleaver N = M×k. The first encoder produces P1 = M×(n1−k) = M×p1

parity check bits. The second encoder produces P2 = M × (n2 − k) = M × p2

parity check bits. Thus the total number of parity bits generated by the GPCB
encoder is P = P1 + P2 = M × (n1 + n2 − 2 × k). The length of the GPCB
codeword is given by L = N +P = M × (n1 +n2 −k). Consequently, the code
rate of the GPCB codes can be computed by :

N
L

= M×k
M×(n1+n2−k)

= k
n1+n2−k

This implies that the GPCB code rate is independent of the number of sub-
blocks M. Table 1 gives some examples of codes based on this construction
where the two components codes are the same, and for different values for
M. In this contribution several interleaving techniques were invoked such as
random, block, diagonal, helical, and cyclic interleaver.
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(a): Structure of encoder (b): Transmitted codeword

Figure 2: Encoder structure of generalized parallel concatenated block codes

3 Component decoder

3.1 Threshold decoding

3.1.1 One step majority logic codes

Consider an (n, k) linear code C with parity-check matrix H. The row space of
H is an (n, n− k) linear code, denoted by C⊥, which is the dual code of C, or
the null space of C. For any vector U in C and any vector V in C⊥, the inner
product of U and V is zero. Now suppose that a code vector U in C is BPSK
modulated and transmitted over an AWGN channel. Let E(e1, e2, . . . , en) and
R(r1, r2, . . . , rn) be the error vector and the received binary vector respectively.
Then R = U + E. For any vector V in the dual code C⊥, we can form the
following linear sum of the received digits:

A =
n∑

i=0

ri · vi

This is called a parity-check sum. Using the fact that 〈U, V 〉 = 0, we obtain
the following relationship between the check sum A and error digits in E:

A =
n∑

i=1

ei · vi

Suppose that there exist J vectors in the dual code C⊥, which have the follow-
ing properties :
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Table 1: Some Examples of GPCB codes

Component code M GPCB-OSMLD Code parameters Code rate
DSC(7,3) 1 (11,3) 0.27
DSC(7,3) 100 1100,300) 0.27
BCH(15,7) 1 (23,7) 0.30
BCH(15,7) 10 (230,70) 0.30
DSC(21,11) 10 (310,110) 0.35
DSC(21,11) 200 (6200,2200) 0.35
DSC(73,45) 1 (101,45) 0.44
DSC(73,45) 10 (1010,450) 0.44
DSC(73,45) 100 (10100,4500) 0.44
DSC(73,45) 200 (20200,9000) 0.44

DSC(273,191) 1 (355,191) 0.53
DSC(273,191) 10 (3550,1910) 0.53
DSC(273,191) 100 (35500,19100) 0.53
DSC(273,191) 300 (106500,57300) 0.53

1. The jjh component of each vector is a 1
2. For i �= j there is at most one vector whose ith component is a 1
These J vectors are said to be orthogonal on the jth digit position. We call
them orthogonal vectors. Now, let us form J parity-check sums from these J
orthogonal vectors. For each i in {1, . . . , J}

Ai =
∑
p�=j

ep + ej

We see that the error digit ej is checked by all the check sums above. Because
of the second property of the orthogonal vectors, any error digit other than ej

is checked by at most one check sum.
If all the error digits in the sum Ai are zero, the value of Ai is equal to ej .
Based on this fact, the parity-check sums orthogonal on ej can be used to
estimate ej , or to decode the received digit rj.
Table 2 shows some examples of (OSMLD) codes. In this table we used the
abbreviation DSC for Difference Set Cyclic codes, EG for Euclidean Geometry
codes and BCH for Bose Chaudhuri and Hocquenghem codes. The EG codes
used in this study are 0-order and according to [12], they are OSMLD codes.
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Table 2: Set of OSMLD Codes

n k J Minimal distance Rate Code family
7 3 3 4 0.42 DSC
15 7 4 5 0.46 BCH
21 11 5 6 0.52 DSC
63 37 8 9 0.58 EG
73 45 9 10 0.61 DSC
255 175 16 17 0.68 EG
273 191 17 18 0.69 DSC
1023 781 32 33 0.76 EG
1057 813 33 34 0.76 DSC
4161 3431 65 66 0.82 DSC

3.1.2 Majority logic decoding principle

Majority logic decoding is a binary input binary output decoding algorithm
[12]. It is introduced in this section with an example.
The error digit ej is decoded as 1 if at least one-half of the check sums orthog-
onal on ej , are equal to 1; otherwise, ej is decoded as 0 like majority rule. If
C(n, k) is a cyclic code, each ei can be decoded simply by cyclically permuting
the received word R into the buffer store.
As an example : Let us consider the (7,3) code, which is the short code in
difference set codes (DSC) family (see Table 1). This code is specified by the
perfect difference set P = {0, 2, 3} of order 21. From this prefect set, we can
form the following three check sums orthogonal on e6 :

⎧⎪⎨
⎪⎩

A1 = e3 + e4 + e6

A2 = e1 + e5 + e6

A3 = e0 + e2 + e6

If a simple error e = (000001) occur, than we have A1 = A2 = A3 = 1. If a
double error occur, as an example e6 = 1 and one value of e0, . . . , e5 is equal
to 1, then two values of Ai are 1. A simple decoding rule can be expressed as :

{
e6 = 1 if at least 2 values of Ai are 1
e6 = 0 otherwise

3.2 Soft-input soft-output threshold decoding

Threshold decoding is simply the logical extension to soft decisions of majority
decoding described above [7]. In the original work of Massey [4], it considered



Decoding of GPCB OSMLD Codes 2027

two alternatives of the decoding algorithm. We consider here the method
which use the Bi equations that are obtained from Ai by eliminating the ej

term.
Let us consider a transmission of block coded binary symbols {0, 1} using a
BPSK modulation over AWGN channel, the decoder soft output for the jth bit
position of a given soft input R(r1, . . . , rn) is defined as :

LLRj = ln
P (cj = 1/R)

P (cj = 0/R)
(1)

where C(c1, . . . , cn) is the transmitted codeword. Expression (1) is a log like-
lyhood ratio for the symbol cj . The hard decision vector corresponding to the
received vector R is denoted by H(h1, . . . , hn). For a code with J orthogonal
parity check equations, (1) can be expressed as :

LLRj � ln
P (cj = 1/{Bi})
P (cj = 0/{Bi}) (2)

where Bi, i ∈ {0, . . . , J} are obtained from the orthogonal parity check equa-
tions on the jth bit as follows :
The term B0 is defined to be B0 = hj. For each index i in {1, . . . , J} the
term Bi is computed by using the ith orthogonal parity equation. By applying
BAYES rule, (2) becomes

LLRj � ln
P ({Bi}/cj = 1) × P (cj = 1)

P ({Bi}/cj = 0) × P (cj = 0)
(3)

Since the parity check equations are orthogonal on the jth symbol the individual
probabilities are all independent and (3) can be rewritten as :

LLRj �
J∑

i=0

ln
P ({Bi}/cj = 1)

P ({Bi}/cj = 0)
+ ln

P (cj = 1)

P (cj = 0)
(4)

Assume that the transmitted symbols are equally likely to be 0 or 1, and
thus the last term in (4) is null. As a result, we obtain

LLRj �
J∑

i=1

ln
P ({Bi}/cj = 1)

P ({Bi}/cj = 0)
+ ln

P ({B0}/cj = 1)

P ({B0}/cj = 0)
(5)

According to [7], (5) can be expressed as

LLRj � (1 − 2B0) · w0 +
J∑

i=1

(1 − 2Bi) · wi (6)
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where the value of (1 − 2B0) is equal to +1 or -1 and wi is a weighting term
proportional to the reliability of the ith parity check. It is easy to show that:

(1 − 2B0) · w0 =
4 · Es

N0

· rj (7)

Where Es is the energy per symbol and N0 is the noise spectral density.

wi = ln[
1 +

∏ni
k=1 tanh(Lik

2
)

1 − ∏ni
k=1 tanh(Lik

2
)
] (8)

where ni is the total number of terms in the ith orthogonal parity equation
without cj ,ik represents the kth element of the ith parity equation and

Lik =
4Es

N0

· | rik | (9)

Thus the soft output can be split into two terms, namely into a normalized
version of the soft input rj and an extrinsic information Wj representing an
estimates made by the orthogonal bits on the current bit cj . Hence (6) is
rewriting in

LLRj =
4Es

N0
· rj + Wj (10)

The algorithmic structure of the SISO threshold decoding can be summarized
as follows :

For each j=1,.....,n
Compute the terms Bi and wi, i ∈ {1, ......, J}
Calculate B0 and w0

Compute the extrinsic information :

Wj =
J∑

i=1

(1 − 2Bi) · wi

The Soft-output is obtained by:

LLRj =
4Es

N0
· rj + Wj
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4 The proposed iterative decoding of GPCB-

OSMLD codes

In this sectoin we describe the proposed decoding algorithm for generalized
parallel concatenated block codes, it’s designed to decode the generalized par-
allel concatenated block codes based on two systematic OSMLD codes using
a soft output version of threshold algorithm with Lucas’s connexion scheme.
This algorithm is iterative as it is shown in figure 3. At each iteration, two
component decoders are used. The first one uses the systematic information
and the first parity check symbols in order to generate extrinsic information
by the SISO Threshold algorithm. This extrinsic information concern as well
as : Parts check bits and systematic bits. The first part is used to update
the reliabilities of the parity check bits which will be used only by the fist de-
coder, and the second part is used to update the reliabilities of the systematic
bits which will be interleaved and feed into the second decoder. The second
decoder also generates the extrinsic information using threshold decoder, and
then updates the reliabilities of the parity check bits and systematic bits for
the second time in one iteration. The updated reliabilities for systematic bits
will be desinterleaved and added to the systematic information used in the last
iteration and feed again into first decoder, for the next iteration. The process
resume until a maximum number of iterations is reached.

In figure 3, we use some notions which will be defined in the following :
R: Recieved word, it consist of three parts, the systematic information called
Y, and (Z1, Z2) defined below :
Z1 : The parity check information generated by first encoder.
Z2 : The parity check information generated by second encoder.

Figure 3: Proposed iterative decoding scheme

We adopt also the notation below:
Y1 = Y : The systematic information present at the entry of first decoder.
Y2 = Π(Y ) : The systematic information present at the entry of second de-
coder.
W1 : The extrinsic information generated by the first decoder for Y1.
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W2 : The extrinsic information generated by the second decoder for Y2.
WZ1 : The extrinsic information generated by the first decoder for Z1.
WZ2 : The extrinsic information generated by the second decoder for Z2.
Dj : The jth bit of hard decision(decoded word).
imax : Number of iterations
i, j : Counters.

Step 1: Initialising :
i = 0

Y
(0)
1 = Y

Y
(0)
2 = Π(Y )

Z
(0)
1 = Z1

Z
(0)
2 = Z2

Step 2:
While (i < imax)
{

Y
(i+1)
1 = Y

(i)
1 + Π−1(W

(i)
2 )

Z
(i+1)
1 = Z

(i)
1 + W

(i)
Z1

Y
(i+1)
2 = Y

(i)
2 + Π(W

(i)
1 )

Z
(i+1)
2 = Z

(i)
2 + W

(i)
Z2

i=i+1
}
Step 3: Decision
for(j = 0; j < k × M ; j + +)

LLRj = 4Es

N0
· Y imax

2j
+ W imax

2j

if(LLRj > 0)
Dj = 1

else
Dj = 0

5 The simulation results

In this section, we present the simulation results and analysis for some GPCB-
OSMLD codes. Transmission over the additive white Gaussian noise (AWGN)
channel and binary antipodal modulation is used. We are interested in the
information bit error rate (BER) for different signal to noise ratios per infor-
mation bit (Eb/N0) in dB. We show that there are many parameters which
affect the performance of GPCB-OSMLD codes. These parameters are : The
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number of decoding iterations, the parameters of component codes and inter-
leaver size (see table 3).

Table 3: Simulation parameters

Parameter Value
Component decoder Threshold

Iterations 1 to 20
Modulation BPSK

Channel AWGN
Interleaver pattern Random interleaver (default value)

Diagonal interleaver
Cyclic interleaver
Block interleaver
helical interlever

Interleaver size(N=Mxk) 1xk, 10xk, 100xk, 300xk
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5.1 The Turbo effect

In this study, we want to emphasize the effect of number of iterations on the
system performance using an Random interleaver for GPCB 0SMLD (30300,
13500) which is obtained from DSC(73,45) code with M=300, and GPCB
OSMLD (35500, 19100) which is obtained from DSC(273,191) with M=100.
The figures 4 and 5 show that the performances increase with number of itera-
tions. According to these figures we obtain respectively about 2.5dB and 3dB
coding gain at 10−5 from iteration 1 to 20. So we note that the turbo effect is
established for this family of codes.

1 1.5 2 2.5 3 3.5 4 4.5 5
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−6

10
−5
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−3
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−2

10
−1
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0

SNR(dB)

B
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iter−2
iter−4
iter−6
iter−10
iter−15

Figure 4: Performance of GPCB-OSMLD(30300,13500) code on AWGN chan-
nel

5.2 The effect of block size (parameter M)

Figure 6 shows the BER versus SNR results of the GPCB OSMLD (355,191)
code for different values of M (1, 10,100 and 300). By increasing M we obtain
about a gain of 2.2dB, the amelioration becomes negligeable when M is greater
than 300. Through the figure 7 we observe that there is a compromise between
parameter M and the number of iterations, for example for the number itera-
tion equal to 1 or 2, we observe that even if we increase M we don’t improve
the BER, however when the number of iterations is greater than 3 increasing
M improves the performance of our decoder.
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Figure 5: Performance of GPCB-OSMLD(35500,19100) code on AWGN chan-
nel

2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
E

R

M==1
M==10
M==100
M==300

Figure 6: Performance of GPCB-OSMLD(355,191) code for different values of
M on AWGN channel
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Figure 7: BER of GPCB-OSMLD(101,45) code for different number of itera-
tions versus the parameter M for an SNR=2dB

5.3 The effect of interleaver

To study the influence of the interleaver pattern on the GPCB-OSMLD codes
performance, we have evaluated the BER of the GPCB-OSMLD (1111,495)
code using different interleavers such as diagonal, cyclic, block, helical and
random interleaver. The figure 8 shows the results. We observe that the block
and helical are little good than random, diagional and cyclic ones.
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Figure 8: Interleaver structure effect on the performance of a GPCB-OSMLD
codes

5.4 Comparisons with other works

In this subsection we present on one hand, the comparison between GPCB-
OSMLD decoded by our algorithm and GPCB-BCH decoded by the algorithm
proposed by Belkasmi et al [3].
For the rate 0.45 we compare the GPCB-OSMLD (101,45) and GPCB BCH(169,85)
codes obtained from Farchan [13], and for the rate 0.53 we compare the GPCB-
OSMLD(355,191) and GPCB-BCH(127,78) codes obtained from Farchan [13].
Figure 9 shows that our proposed algorithm is too better in term of BER than
that of Belkasmi et al [3] for both rates mentioned above.
In the other hand the comparison between our decoder and the algorithm of
Lucas [11], for the compenent code OSMLD (73,45) and M=1 the figure 10
shows that our decoder outperforms the Lucas algorithm for this code.

5.5 Shannon limits

In this subsection we evaluate the performance at 20th iteration of the GPCB-
OSMLD (30300, 13500) and GPCB-OSMLD (106500, 57300) codes. Their
code rates are, respectively 0.45 and 0.53. Our decoder performances and
Shannon limits are shown in figure 11. From this figure, we observe that these
codes are respectively 2.4dB and 2dB away from their Shannon limits.
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Figure 9: Comparison of two decoders for GPCB-OSMLD and GPCB-BCH
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Figure 10: Comparison of our algorithm and Lucas for PCB(4545,2025) code
and GPCB-OSMLD(30300,13500) code
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Figure 11: Performance of two GPCB-OSMLD codes and their positions from
Shannon limits

6 Conclusion

In this work, we have applied the threshold algorithm as a Soft In Soft Out(SISO)
compenent decoder and a Lucas connexion scheme to decode the GPCB-
OSMLD codes. For this decoder we have studied the effect of various parame-
ters like component codes, the number of iterations, interleaver size (parame-
ter M) and pattern using simulations. The results show that by increasing the
number of iterations and/or the block size (parameter M) we ameliorate the
performance of the decoder. We have also demonstrated through simulation
that there is a relationship between parameter M and the number of iterations.
Finaly by comparing the coding of the codes GPCB-OSMLD (30300, 13500)
and GPCB-OSMLD (106500, 57300), we find that these codes are respectively
2.4dB and 2dB away from their Shannon limits.
The obtained results by applying the above construction and decoding on
OSMLD family codes look very promising and open new perspectives. The
extension of this study is to apply other connection sachems.
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